uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Royal Inst Technol KTH.
2017 (Engelska)Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, nr 19, s. 16148-16158Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Borophene, single atomic-layer sheet of boron (Science 2015, 350, 1513), is a rather new entrant into the burgeoning class of 2D materials. Borophene exhibits anisotropic metallic properties whereas its hydrogenated counterpart borophane is reported to be a gapless Dirac material lying on the same bench with the celebrated graphene. Interestingly, this transition of borophane also rendered stability to it considering the fact that borophene was synthesized under ultrahigh vacuum conditions on a metallic (Ag) substrate. On the basis of first-principles density functional theory computations, we have investigated the possibilities of borophane as a potential Li/Na-ion battery anode material. We obtained a binding energy of -2.58 (-1.08 eV) eV for Li (Na)-adatom on borophane and Bader charge analysis revealed that Li(Na) atom exists in Li+(Na+) state. Further, on binding with Li/Na, borophane exhibited metallic properties as evidenced by the electronic band structure. We found that diffusion pathways for Li/Na on the borophane surface are anisotropic with x direction being the favorable one with a barrier of 0.27 and 0.09 eV, respectively. While assessing the Li-ion anode performance, we estimated that the maximum Li content is Li0.445B2H2, which gives rises to a material with a maximum theoretical specific capacity of 504 mAh/g together with an average voltage of 0.43 V versus Li/Li+. Likewise, for Na-ion the maximum theoretical capacity and average voltage were estimated to be 504 mAh/g and 0.03 V versus Na/Na+, respectively. These findings unambiguously suggest that borophane can be a potential addition to the map of Li and Na-ion anode materials and can rival some of the recently reported 2D materials including graphene.

Ort, förlag, år, upplaga, sidor
AMER CHEMICAL SOC , 2017. Vol. 9, nr 19, s. 16148-16158
Nyckelord [en]
borophene, borophane, Dirac material, Li-ion battery, Na-ion battery, Li/Na-diffusion
Nationell ämneskategori
Materialkemi
Identifikatorer
URN: urn:nbn:se:uu:diva-327151DOI: 10.1021/acsami.7b01421ISI: 000401782500026PubMedID: 28443653OAI: oai:DiVA.org:uu-327151DiVA, id: diva2:1136132
Forskningsfinansiär
VetenskapsrådetStandUpCarl Tryggers stiftelse för vetenskaplig forskning Tillgänglig från: 2017-08-25 Skapad: 2017-08-25 Senast uppdaterad: 2019-01-05Bibliografiskt granskad
Ingår i avhandling
1. Energy Storage Materials: Insights From ab Initio Theory: Diffusion, Structure, Thermodynamics and Design.
Öppna denna publikation i ny flik eller fönster >>Energy Storage Materials: Insights From ab Initio Theory: Diffusion, Structure, Thermodynamics and Design.
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The development of science and technology have provided a lifestyle completely dependent on energy consumption. Devices such as computers and mobile phones are good examples of how our daily life depends on electric energy. In this scenario, energy storage technologies emerge with strategic importance providing efficient ways to transport and commercialize the produced energy. Rechargeable batteries come as the most suitable alternative to fulfill the market demand due to their higher energy- and power- density when compared with other electrochemical energy storage systems. In this context, during the production of this thesis, promising compounds for advanced batteries application were investigated from the theoretical viewpoint. The framework of the density functional theory has been employed together with others theoretical tools to study properties such as ionic diffusion, redox potential, electronic structure and crystal structure prediction.

Different organic materials were theoretically characterized with quite distinct objectives. For instance, a protocol able to predict the redox potential in solution of long oligomers were developed and tested against experimental measurements. Strategies such as anchoring of small active molecules on polymers backbone have also been investigated through a screening process that determined the most promising candidates. Methods such as evolutionary simulation and basin-hopping algorithm were employed to search for global minimum crystal structures of small molecules and inorganic compounds working as a cathode of advanced sodium batteries. The crystal structure evolution of C6Cl4O2 upon Na insertion was unveiled and the main reasons behind the lower specific capacity obtained in the experiment were clarified. Ab initio molecular dynamics and the nudged elastic band method were employed to understand the underlying ionic diffusion mechanisms in the recently proposed Alluaudite and Eldfellite cathode materials. Moreover, it was demonstrated that electronic conduction in Na2O2, a byproduct of the Na-O2 battery, occurs via hole polarons hopping. Important physical and chemical insights were obtained during the production of this thesis. It finally supports the development of low production cost, environmental friendliness and efficient electrode compounds for advanced secondary batteries. 

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 83
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1584
Nyckelord
Density Functional Theory, Defects Diffusion, Thermodynamics and Batteries.
Nationell ämneskategori
Naturvetenskap
Identifikatorer
urn:nbn:se:uu:diva-331399 (URN)978-91-513-0122-8 (ISBN)
Disputation
2017-12-07, Polhemsalen, Ångström Laboratory, Lägerhyddsvägen 1, Uppsala, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2017-11-15 Skapad: 2017-10-19 Senast uppdaterad: 2018-03-07
2. Computational Studies of 2D Materials: Application to Energy Storage and Electron Transport in Nanoscale Devices
Öppna denna publikation i ny flik eller fönster >>Computational Studies of 2D Materials: Application to Energy Storage and Electron Transport in Nanoscale Devices
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The field of two-dimensional (2D) layered materials provides a new platform for studying diverse physical phenomena that are scientifically interesting and relevant for technological applications. Novel applications in electronics and energy storage harness the unique electronic, optical, and mechanical properties of 2D materials for design of crucial components. Atomically thin, with large surface to volume ratio, these materials are attractive for broad applications for hydrogen storage, sensing, batteries and photo-catalysis. Theoretical predictions from atomically resolved computational simulations of 2D materials play a pivotal role in designing and advancing these developments.

The central topic of this thesis is 2D materials studied using density functional theory and non-equilibrium Green’s function. The electronic structure and transport properties are discussed for several synthesized and predicted 2D materials, with diverse potential applications in nanoscale electronic devices, gas sensing, and electrodes for rechargeable batteries. Lateral and vertical heterostructures have been studied for applications in nanoscale devices such as graphene/hBN heterostructure nanogap for a potential DNA sequencing device, while in case of twisted bilayer black phosphorus nanojunction, where electronic and transport properties have been explored for diode-like characteristics device. We also have addressed the structural, electronic and transport properties of the recently synthesized polymorphs of 2D borons known as borophenes. We have explored the conventional methods of tuning the material’s properties such as strain in borophene and substitutional doping in black phosphorus with the further investigation of their gas sensing application.

A significant portion of this thesis is also dedicated to the energy storage applications of different 2D materials. Energy storage technologies arise with vital importance in providing effective ways to transport and commercialize the produced energy, aiming at rechargeable batteries with high energy and power density. In this context, first-principles simulations have been applied together with other theoretical tools to evaluate structural properties, ion intercalation kinetics, specific capacity and open circuit voltage of selected 2D materials at the atomic level. The simulation study supports the understanding while improving the properties of the materials to increase their efficiency in battery operation.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2019. s. 101
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1761
Nyckelord
Density functional theory, Non-equilibrium Green's function, 2D materials, Energy storage, Electron transport
Nationell ämneskategori
Den kondenserade materiens fysik Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:uu:diva-369471 (URN)978-91-513-0547-9 (ISBN)
Disputation
2019-03-01, 80101, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-01-29 Skapad: 2019-01-05 Senast uppdaterad: 2019-02-18

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Jena, Naresh K.Araujo, Rafael Barros Neves deShukla, VivekanandAhuja, Rajeev

Sök vidare i DiVA

Av författaren/redaktören
Jena, Naresh K.Araujo, Rafael Barros Neves deShukla, VivekanandAhuja, Rajeev
Av organisationen
Materialteori
I samma tidskrift
ACS Applied Materials and Interfaces
Materialkemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 301 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf