uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Model-based optimization for individualized deep brain stimulation
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Reglerteknik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för systemteknik.
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Deep Brain Stimulation (DBS) is an established therapy that is predominantly  utilized in treating the symptoms of neurodegenerative diseases such as Parkinson's Disease and Essential Tremor, crippling diseases like Chronic Pain and Epilepsy, and psychiatric diseases such as Schizophrenia and Depression. Due to its invasive nature, DBS is considered as a last resort therapy.DBS is performed by transmitting electric pulses through an electrode implanted in the brain of the patient.

The stimulation is driven by a battery-powered Implanted Pulse Generator. The brain is a very delicate and complex organ and, therefore, accurate positioning the electrode is vital. To achieve a satisfactory therapeutical result, the stimulation targets a certain predefined brain structure that depends on the disease.

The effect of DBS depends on the individual, the chosen stimulating contact(s), and the pulse parameters, i.e. amplitude, frequency, width, and shape. Tuning these parameters to the best effect is currently done by a lengthy trial-and-error process. Insufficient stimulation does not properly alleviate the symptoms of the disease, while overstimulation or stimulation off target is prone to side effects.

This work envisions assisting physicians in DBS therapy by utilizing model-based estimation and optimization, maximizing stimulation of the target and minimizing stimulation in potentially problematic areas of the brain. This work focuses on amplitude and contact selection. Because of inter-patient differences, individualized models based on clinical imaging have to be created. Alternatively, semi-individualized models can be designed using atlases that save time but potentially introduce inaccuracies. Other optimization  applications to DBS are proposed in the thesis, e.g. fault alleviation and electrode design.

Electrical properties of the brain can change over time and alter the stimulation spread. A system identification approach has been proposed to quantify these changes.

The main aim of DBS is to alleviate the symptoms of the disease and quantifying symptoms is important. The ultimate vision of this work is to design a closed-loop system that can deliver optimal stimulation to the brain while automatically adapting to changes in the brain and the severity of symptoms.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2018. , s. 68
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1659
Nyckelord [en]
Neuromodulation, Deep Brain Stimulation, Inverse Problems, Optimization, Finite Element Methods
Nationell ämneskategori
Reglerteknik
Forskningsämne
Elektroteknik med inriktning mot reglerteknik
Identifikatorer
URN: urn:nbn:se:uu:diva-347353ISBN: 978-91-513-0306-2 (tryckt)OAI: oai:DiVA.org:uu-347353DiVA, id: diva2:1194223
Disputation
2018-05-25, ITC 2446 (Polacksbacken), Lägerhyddsvägen 2, Uppsala, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-05-03 Skapad: 2018-03-29 Senast uppdaterad: 2018-10-08
Delarbeten
1. Accuracy of the Finite Element Method in Deep Brain Stimulation Modelling
Öppna denna publikation i ny flik eller fönster >>Accuracy of the Finite Element Method in Deep Brain Stimulation Modelling
2014 (Engelska)Ingår i: Proc. International Conference on Control Applications: CCA 2014, Piscataway, NJ: IEEE , 2014, s. 1479-1484Konferensbidrag, Publicerat paper (Refereegranskat)
Ort, förlag, år, upplaga, sidor
Piscataway, NJ: IEEE, 2014
Nationell ämneskategori
Reglerteknik Medicinsk apparatteknik
Identifikatorer
urn:nbn:se:uu:diva-238211 (URN)10.1109/CCA.2014.6981533 (DOI)000366055800214 ()978-1-4799-7409-2 (ISBN)
Konferens
CCA 2014, October 8–10, Antibes, France
Forskningsfinansiär
EU, Europeiska forskningsrådet, 247035
Tillgänglig från: 2014-10-10 Skapad: 2014-12-10 Senast uppdaterad: 2018-03-29Bibliografiskt granskad
2. Optimization of lead design and electrode configuration in Deep Brain Stimulation
Öppna denna publikation i ny flik eller fönster >>Optimization of lead design and electrode configuration in Deep Brain Stimulation
2016 (Engelska)Ingår i: International Journal On Advances in Life Sciences, ISSN 1942-2660, E-ISSN 1942-2660, Vol. 8, s. 76-86Artikel i tidskrift (Refereegranskat) Published
Nationell ämneskategori
Reglerteknik
Identifikatorer
urn:nbn:se:uu:diva-305224 (URN)
Tillgänglig från: 2016-06-30 Skapad: 2016-10-13 Senast uppdaterad: 2018-03-29Bibliografiskt granskad
3. Electric field modeling and spatial control in Deep Brain Stimulation
Öppna denna publikation i ny flik eller fönster >>Electric field modeling and spatial control in Deep Brain Stimulation
2015 (Engelska)Ingår i: Proc. 54th Conference on Decision and Control, Piscataway, NJ: IEEE , 2015, s. 3846-3851Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Deep Brain Stimulation (DBS) is an established treatment, in e.g. Parkinson's Disease, whose underlying biological mechanisms are unknown. In DBS, electrical stimulation is delivered through electrodes surgically implanted into certain regions of the brain of the patient. Mathematical models aiming at a better understanding of DBS and optimization of its therapeutical effect through the simulation of the electrical field propagating in the brain tissue have been developed in the past decade. The contribution of the present study is twofold: First, an analytical approximation of the electric field produced by an emitting contact is suggested and compared to the numerical solution given by a Finite Element Method (FEM) solver. Second, the optimal stimulation settings are evaluated by fitting the field distribution to a target one to control the spread of the stimulation. Optimization results are compared to those of a geometric approach, maximizing the intersection between the target and the activated volume in the brain tissue and reducing the stimulated area beyond said target. Both methods exhibit similar performance with respect to the optimal stimuli, with the electric field control approach being faster and more versatile.

Ort, förlag, år, upplaga, sidor
Piscataway, NJ: IEEE, 2015
Nationell ämneskategori
Reglerteknik Medicinsk apparatteknik
Identifikatorer
urn:nbn:se:uu:diva-284317 (URN)10.1109/CDC.2015.7402817 (DOI)000381554504006 ()9781479978847 (ISBN)
Konferens
CDC 2015, December 15–18, Osaka, Japan
Forskningsfinansiär
EU, Europeiska forskningsrådet, 247035
Tillgänglig från: 2015-12-18 Skapad: 2016-04-16 Senast uppdaterad: 2018-03-29Bibliografiskt granskad
4. Optimization-based contact fault alleviation in deep brain stimulation leads
Öppna denna publikation i ny flik eller fönster >>Optimization-based contact fault alleviation in deep brain stimulation leads
2018 (Engelska)Ingår i: IEEE transactions on neural systems and rehabilitation engineering, ISSN 1534-4320, E-ISSN 1558-0210, Vol. 26, nr 1, s. 69-76Artikel i tidskrift (Refereegranskat) Published
Nationell ämneskategori
Medicinteknik
Identifikatorer
urn:nbn:se:uu:diva-342456 (URN)10.1109/TNSRE.2017.2769707 (DOI)000422939000008 ()29324404 (PubMedID)
Tillgänglig från: 2017-11-03 Skapad: 2018-02-26 Senast uppdaterad: 2018-03-29Bibliografiskt granskad
5. Semi-Individualized electrical models in deep brain stimulation: A variability analysis
Öppna denna publikation i ny flik eller fönster >>Semi-Individualized electrical models in deep brain stimulation: A variability analysis
Visa övriga...
2017 (Engelska)Ingår i: 2017 IEEE Conference on Control Technology and Applications (CCTA), IEEE, 2017, s. 517-522Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Deep Brain Stimulation (DBS) is a well-established treatment in neurodegenerative diseases, e.g. Parkinson's Disease. It consists of delivering electrical stimuli to a target in the brain via a chronically implanted lead. To expedite the tuning of DBS stimuli to best therapeutical effect, mathematical models have been developed during recent years. The electric field produced by the stimuli in the brain for a given lead position is evaluated by numerically solving a Partial Differential Equation with the medium conductivity as a parameter. The latter is patient- and target-specific but difficult to measure in vivo. Estimating brain tissue conductivity through medical imaging is feasible but time consuming due to registration, segmentation and post-processing. On the other hand, brain atlases are readily available and processed. This study analyzes how alternations in the conductivity due to inter-patient variability or lead position uncertainties affect both the stimulation shape and the activation of a given target. Results suggest that stimulation shapes are similar, with a Dice's Coefficient between 93.2 and 98.8%, with a higher similarity at lower depths. On the other hand, activation shows a significant variation of 17 percentage points, with most of it being at deeper positions as well. It is concluded that, as long as the lead is not too deep, atlases can be used for conductivity maps with acceptable accuracy instead of fully individualized though medical imaging models.

Ort, förlag, år, upplaga, sidor
IEEE, 2017
Nyckelord
bioelectric phenomena, biological tissues, biomedical electrodes, brain, diseases, neurophysiology, partial differential equations, patient treatment, DBS stimuli, Parkinson disease, Partial Differential Equation, brain atlases, brain tissue conductivity, chronically implanted lead, deep brain stimulation, electric field, electrical stimuli, interpatient variability, medical imaging models, neurodegenerative diseases, semiIndividualized electrical models, variability analysis, Brain modeling, Computational modeling, Conductivity, Lead, Mathematical model, Satellite broadcasting
Nationell ämneskategori
Reglerteknik Annan medicinteknik
Identifikatorer
urn:nbn:se:uu:diva-347344 (URN)10.1109/CCTA.2017.8062514 (DOI)000426981500084 ()978-1-5090-2183-3 (ISBN)978-1-5090-2182-6 (ISBN)978-1-5090-2181-9 (ISBN)
Konferens
1st Annual IEEE Conference on Control Technology and Applications, 27-30 Aug. 2017, Mauna Lani, HI, USA.
Tillgänglig från: 2018-03-29 Skapad: 2018-03-29 Senast uppdaterad: 2018-08-17Bibliografiskt granskad
6. Calculating Directional Deep Brain Stimulation Settings by Constrained Optimization
Öppna denna publikation i ny flik eller fönster >>Calculating Directional Deep Brain Stimulation Settings by Constrained Optimization
Visa övriga...
(Engelska)Artikel i tidskrift (Refereegranskat) Submitted
Abstract [en]

Objective: Deep Brain Stimulation (DBS) consists of delivering electrical stimuli to a brain target via an implanted lead to treat neurodegenerative conditions. Individualized stimulation is vital to ensure therapeutic results, since DBS may otherwise become ineffective or cause undesirable side effects. Since the DBS pulse generator is battery-driven, power consumption incurred by the stimulation is important. In this study, target coverage and power consumption are compared over a patient population for clinical and model-based patient-specific settings calculated by constrained optimization. Methods: Brain models for five patients undergoing bilateral DBS were built. Mathematical optimization of activated tissue volume was utilized to calculate stimuli amplitudes, with and without specifying the volumes, where stimulation was not allowed to avoid side effects. Power consumption was estimated using measured impedance values and battery life under both clinical and optimized settings. Results: It was observed that clinical settings are generally less aggressive than the ones suggested by unconstrained model-based optimization, especially under asymmetrical stimulation. The DBS settings satisfying the constraints were close to the clinical values. Conclusion: The use of mathematical models to suggest optimal patient-specific DBS settings that observe technological and safety constraints can save time in clinical practice. It appears though that the considered anatomy-related safety constraints depend on the patient and further research is needed in this regard. Power consumption is important to consider since it increases with the square of the stimuli amplitude and critically affects battery life. Significance: This work highlights the need of specifying the brain volumes to be avoided by stimulation while optimizing the DBS amplitude, in contrast to minimizing general stimuli overspill, and applies the technique to a cohort of patients. It also stresses the importance of taking power consumption into account.

Nyckelord
Neuromodulation, Deep Brain Stimulation, inverse problems
Nationell ämneskategori
Reglerteknik
Identifikatorer
urn:nbn:se:uu:diva-347345 (URN)
Tillgänglig från: 2018-03-29 Skapad: 2018-03-29 Senast uppdaterad: 2018-03-29
7. Online tissue conductivity estimation in Deep Brain Stimulation
Öppna denna publikation i ny flik eller fönster >>Online tissue conductivity estimation in Deep Brain Stimulation
2020 (Engelska)Ingår i: IEEE Transactions on Control Systems Technology, ISSN 1063-6536, E-ISSN 1558-0865, Vol. 28, nr 1, s. 149-162Artikel i tidskrift (Refereegranskat) Published
Nationell ämneskategori
Reglerteknik
Identifikatorer
urn:nbn:se:uu:diva-347346 (URN)10.1109/TCST.2018.2862397 (DOI)000505786600012 ()
Tillgänglig från: 2018-08-16 Skapad: 2018-03-29 Senast uppdaterad: 2020-01-29Bibliografiskt granskad

Open Access i DiVA

fulltext(1067 kB)210 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1067 kBChecksumma SHA-512
0d3321a757b2014d6f31843dc1332170c19e35f4a73261b5646081b7ecb38295a3ae8d98936bc8f722ae2c36fd4f2134c4973bcf4f342839eab57f52183cb7ef
Typ fulltextMimetyp application/pdf
Köp publikationen >>

Personposter BETA

Cubo, Rubén

Sök vidare i DiVA

Av författaren/redaktören
Cubo, Rubén
Av organisationen
ReglerteknikAvdelningen för systemteknik
Reglerteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 210 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 981 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf