uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Distance Functions Based on Multiple Types of Weighted Steps Combined with Neighborhood Sequences
Eastern Mediterranean Univ, Dept Math, Mersin 10, Famagusta, North Cyprus, Turkey.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.ORCID-id: 0000-0001-7764-1787
Univ Nantes, LS2N, UMR, CNRS 6004, Nantes, France.
2018 (Engelska)Ingår i: Journal of Mathematical Imaging and Vision, ISSN 0924-9907, E-ISSN 1573-7683, Vol. 60, nr 8, s. 1209-1219Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this paper, we present a general framework for digital distance functions, defined as minimal cost paths, on the square grid. Each path is a sequence of pixels, where any two consecutive pixels are adjacent and associated with a weight. The allowed weights between any two adjacent pixels along a path are given by a weight sequence, which can hold an arbitrary number of weights. We build on our previous results, where only two or three unique weights are considered, and present a framework that allows any number of weights. We show that the rotational dependency can be very low when as few as three or four unique weights are used. Moreover, by using n weights, the Euclidean distance can be perfectly obtained on the perimeter of a square with side length 2n. A sufficient condition for weight sequences to provide metrics is proven.

Ort, förlag, år, upplaga, sidor
2018. Vol. 60, nr 8, s. 1209-1219
Nyckelord [en]
Distance functions, Weight sequences, Neighborhood sequences, Chamfer distances, Approximation of Euclidean distance
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:uu:diva-364167DOI: 10.1007/s10851-018-0805-1ISI: 000443369800003OAI: oai:DiVA.org:uu-364167DiVA, id: diva2:1260834
Tillgänglig från: 2018-11-05 Skapad: 2018-11-05 Senast uppdaterad: 2018-11-16Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Strand, Robin

Sök vidare i DiVA

Av författaren/redaktören
Strand, Robin
Av organisationen
Bildanalys och människa-datorinteraktion
I samma tidskrift
Journal of Mathematical Imaging and Vision
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 24 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf