Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Design and evaluation of linear and rotational generator scale models for wave tank testing
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för elektroteknik, Elektricitetslära. Uppsala University. (Wave Power Group)ORCID-id: 0000-0002-1165-5569
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för elektroteknik, Elektricitetslära. (Wave power group)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för elektroteknik, Elektricitetslära. (Wave power group)ORCID-id: 0000-0001-9213-6447
(Wave power group)ORCID-id: 0000-0002-2031-8134
2019 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Ort, förlag, år, upplaga, sidor
CRC Press , 2019.
Nationell ämneskategori
Energisystem Havs- och vattendragsteknik Marin teknik Annan elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:uu:diva-457307ISBN: 9780429505324 (tryckt)ISBN: 9781138585355 (digital)OAI: oai:DiVA.org:uu-457307DiVA, id: diva2:1606493
Konferens
3rd international conference on renewable energies offshore (renew 2018), 8–10 october 2018, Lisbon, Portugal
Tillgänglig från: 2021-10-27 Skapad: 2021-10-27 Senast uppdaterad: 2024-03-12Bibliografiskt granskad
Ingår i avhandling
1. Prediction horizon requirement  in control and extreme load analyses for survivability: Advancements to improve the performance of wave energy technologies
Öppna denna publikation i ny flik eller fönster >>Prediction horizon requirement  in control and extreme load analyses for survivability: Advancements to improve the performance of wave energy technologies
2021 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The main objective of wave energy converters (WECs) is to ensure reliable electricity production at a competitive cost. Two challenges to achieving this are ensuring an efficient energy conversion and offshore survivability.        

This thesis work is structured in three different sections: Control and maximum power optimization, forces and dynamics analysis in extreme wave conditions, and statistical modeling of extreme loads in reliability analysis.       

The need for prediction and future knowledge of waves and wave forces is essential due to the non-causality of the optimal velocity relation for wave energy converters. Using generic concepts and modes of motion, the sensitivity of the prediction horizon to various parameters encountered in a real system is elaborated. The results show that through a realistic assumption of the dissipative losses, only a few seconds to about half a wave cycle is sufficient to predict the required future knowledge for the aim of maximizing the power absorption.         

The results of a 1:30 scaled wave tank experiment are used to assess the line force and dynamic behaviour of a WEC during extreme wave events. Within the comparison of different wave type representations, i.e. irregular, regular and focused waves, of the same sea state, the results show that not all the wave types deliver the same maximum line forces. As a strategy of mitigating the line forces during extreme wave events, changing the power take-off (PTO) damping may be employed. With consideration of the whole PTO range, the results indicate an optimum damping value for each sea state in which the smallest maximum line force is obtained. Although wave breaking slamming and end-stop spring compression lead to high peak line forces, it is possible that they level out due to the overtopping effect. Waves with a long wavelength result in large surge motion and consequently higher and more damaging forces.        

On the investigation of reliability assessment of the wave energy converter systems, computing the return period of the extreme forces is crucial. Using force measurement force data gathered at the west coast of Sweden, the extreme forces are statistically modelled with the peak-over-threshold method. Then, the return level of the extreme forces over 20 years for the calm season of the year is computed.

Ort, förlag, år, upplaga, sidor
Uppsala: Uppsala University, 2021. s. 70
Nyckelord
control, optimal velocity, non-causality, maximum power output, extreme waves, wave tank experiment, end-stop compression, wave breaking slamming, PTO damping, return level, return period, peak-over-threshold
Nationell ämneskategori
Energisystem Marin teknik Reglerteknik Havs- och vattendragsteknik Energiteknik
Identifikatorer
urn:nbn:se:uu:diva-457329 (URN)
Presentation
2021-12-17, Häggsalen, Ångström Laboratory, Lägerhyddsvägen 1, Uppsala, 10:00 (Engelska)
Handledare
Tillgänglig från: 2021-11-25 Skapad: 2021-10-27 Senast uppdaterad: 2021-11-25Bibliografiskt granskad
2. Survivability control using data-driven approaches and reliability analysis for wave energy converters
Öppna denna publikation i ny flik eller fönster >>Survivability control using data-driven approaches and reliability analysis for wave energy converters
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Wave energy, with five times the energy density of wind and ten times the power density of solar, offers a compelling carbon-free electricity solution. Despite its advantages, ongoing debates surround the reliability and economic feasibility of wave energy converters (WECs). To address these challenges, this doctoral thesis is divided into four integral parts, focusing on optimizing the prediction horizon for power maximization, analyzing extreme waves' impact on system dynamics, ensuring reliability, and enhancing survivability in WECs.

Part I emphasizes the critical importance of the prediction horizon for maximal power absorption in wave energy conversion. Using generic body shapes and modes, it explores the effect of dissipative losses, noise, filtering, amplitude constraints, and real-world wave parameters on the prediction horizon. Findings suggest achieving optimal power output may be possible with a relatively short prediction horizon, challenging traditional assumptions.

Part II shifts focus to WEC system dynamics, analyzing extreme load scenarios. Based on a 1:30 scaled wave tank experiment, it establishes a robust experimental foundation, extending into numerical assessment of the WEC. Results underscore the importance of damping to alleviate peak forces. Investigating various wave representations highlights conservative characteristics of irregular waves, crucial for WEC design in extreme sea conditions.

Part III explores the computational intricacies of environmental design load cases and fatigue analyses for critical mechanical components of the WEC. The analysis is conducted for hourly sea state damage and equivalent two-million-cycle loads. Finally, a comparison of safety factors between the ultimate limit state and fatigue limit state unfolds, illustrating the predominant influence of the ultimate limit state on point-absorber WEC design.

Part IV, centers on elevating survivability strategies for WECs in extreme wave conditions. Three distinct controller system approaches leverage neural networks to predict and minimize the line force. Distinct variations emerge in each approach, spanning from rapid detection of optimal damping to integrating advanced neural network architectures into the control system with feedback. The incorporation of a controller system, refined through experimental data, showcases decreases in the line force, providing a practical mechanism for real-time force alleviation.

This thesis aims to contribute uniquely to the goal of advancing wave energy conversion technology through extensive exploration.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2024. s. 169
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2377
Nyckelord
power maximization, prediction horizon, extreme wave conditions, wave tank experiment, numerical WEC-Sim analysis, reliability analysis, statistical methods, environmental design load, fatigue analysis, statistical methods, survivability analysis, neural network methods
Nationell ämneskategori
Reglerteknik Energisystem Havs- och vattendragsteknik Annan elektroteknik och elektronik Marin teknik Tillförlitlighets- och kvalitetsteknik Energiteknik
Identifikatorer
urn:nbn:se:uu:diva-524903 (URN)978-91-513-2077-9 (ISBN)
Disputation
2024-05-17, Häggsalen (10132), Ångströmlaboratoriet, Uppsala, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2024-04-22 Skapad: 2024-03-12 Senast uppdaterad: 2024-04-22

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

http://www.centec.tecnico.ulisboa.pt/renew2018/

Person

Shahroozi, ZahraEriksson, MikaelGöteman, MalinEngström, Jens

Sök vidare i DiVA

Av författaren/redaktören
Shahroozi, ZahraEriksson, MikaelGöteman, MalinEngström, Jens
Av organisationen
Elektricitetslära
EnergisystemHavs- och vattendragsteknikMarin teknikAnnan elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 83 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf