Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An implementation framework for solving high-dimensional PDEs on massively parallel computers
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för teknisk databehandling. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Tillämpad beräkningsvetenskap.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för teknisk databehandling. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Tillämpad beräkningsvetenskap.
2010 (Engelska)Ingår i: Numerical Mathematics and Advanced Applications: 2009, Berlin: Springer-Verlag , 2010, s. 417-424Konferensbidrag, Publicerat paper (Refereegranskat)
Ort, förlag, år, upplaga, sidor
Berlin: Springer-Verlag , 2010. s. 417-424
Nationell ämneskategori
Datavetenskap (datalogi) Beräkningsmatematik
Identifikatorer
URN: urn:nbn:se:uu:diva-132927DOI: 10.1007/978-3-642-11795-4_44ISI: 000395207900044ISBN: 978-3-642-11794-7 (tryckt)OAI: oai:DiVA.org:uu-132927DiVA, id: diva2:359735
Projekt
eSSENCEUPMARCTillgänglig från: 2010-10-29 Skapad: 2010-10-29 Senast uppdaterad: 2018-06-16Bibliografiskt granskad
Ingår i avhandling
1. Towards an adaptive solver for high-dimensional PDE problems on clusters of multicore processors
Öppna denna publikation i ny flik eller fönster >>Towards an adaptive solver for high-dimensional PDE problems on clusters of multicore processors
2012 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Accurate numerical simulation of time-dependent phenomena in many spatial dimensions is a challenging computational task apparent in a vast range of application areas, for instance quantum dynamics, financial mathematics, systems biology and plasma physics. Particularly problematic is that the number of unknowns in the governing equations (the number of grid points) grows exponentially with the number of spatial dimensions introduced, often referred to as the curse of dimensionality. This limits the range of problems that we can solve, since the computational effort and requirements on memory storage directly depend on the number of unknowns for which to solve the equations.

In order to push the limit of tractable problems, we are developing an implementation framework, HAParaNDA, for high-dimensional PDE-problems. By using high-order accurate schemes and adaptive mesh refinement (AMR) in space, we aim at reducing the number of grid points used in the discretization, thereby enabling the solution of larger and higher-dimensional problems. Within the framework, we use structured grids for spatial discretization and a block-decomposition of the spatial domain for parallelization and load balancing. For integration in time, we use exponential integration, although the framework allows the flexibility of other integrators to be implemented as well. Exponential integrators using the Lanzcos or the Arnoldi algorithm has proven a succesful and efficient approach for large problems. Using a truncation of the Magnus expansion, we can attain high levels of accuracy in the solution.

As an example application, we have implemented a solver for the time-dependent Schrödinger equation using this framework. We provide scaling results for small and medium sized clusters of multicore nodes, and show that the solver fulfills the expected rate of convergence.

Ort, förlag, år, upplaga, sidor
Uppsala University, 2012
Serie
IT licentiate theses / Uppsala University, Department of Information Technology, ISSN 1404-5117 ; 2012-003
Nationell ämneskategori
Datavetenskap (datalogi) Beräkningsmatematik
Forskningsämne
Beräkningsvetenskap
Identifikatorer
urn:nbn:se:uu:diva-169259 (URN)
Handledare
Projekt
eSSENCEUPMARC
Tillgänglig från: 2012-03-09 Skapad: 2012-02-25 Senast uppdaterad: 2019-02-25Bibliografiskt granskad
2. Adaptive Solvers for High-Dimensional PDE Problems on Clusters of Multicore Processors
Öppna denna publikation i ny flik eller fönster >>Adaptive Solvers for High-Dimensional PDE Problems on Clusters of Multicore Processors
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Accurate numerical solution of time-dependent, high-dimensional partial differential equations (PDEs) usually requires efficient numerical techniques and massive-scale parallel computing. In this thesis, we implement and evaluate discretization schemes suited for PDEs of higher dimensionality, focusing on high order of accuracy and low computational cost.

Spatial discretization is particularly challenging in higher dimensions. The memory requirements for uniform grids quickly grow out of reach even on large-scale parallel computers. We utilize high-order discretization schemes and implement adaptive mesh refinement on structured hyperrectangular domains in order to reduce the required number of grid points and computational work. We allow for anisotropic (non-uniform) refinement by recursive bisection and show how to construct, manage and load balance such grids efficiently. In our numerical examples, we use finite difference schemes to discretize the PDEs. In the adaptive case we show how a stable discretization can be constructed using SBP-SAT operators. However, our adaptive mesh framework is general and other methods of discretization are viable.

For integration in time, we implement exponential integrators based on the Lanczos/Arnoldi iterative schemes for eigenvalue approximations. Using adaptive time stepping and a truncated Magnus expansion, we attain high levels of accuracy in the solution at low computational cost. We further investigate alternative implementations of the Lanczos algorithm with reduced communication costs.

As an example application problem, we have considered the time-dependent Schrödinger equation (TDSE). We present solvers and results for the solution of the TDSE on equidistant as well as adaptively refined Cartesian grids.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2014. s. 34
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1199
Nyckelord
adaptive mesh refinement, anisotropic refinement, exponential integrators, Lanczos' algorithm, hybrid parallelization, time-dependent Schrödinger equation
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Beräkningsvetenskap
Identifikatorer
urn:nbn:se:uu:diva-234984 (URN)978-91-554-9095-9 (ISBN)
Disputation
2014-12-12, Room 2446, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 10:15 (Engelska)
Opponent
Handledare
Projekt
eSSENCEUPMARC
Tillgänglig från: 2014-11-21 Skapad: 2014-10-27 Senast uppdaterad: 2019-02-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Gustafsson, MagnusHolmgren, Sverker

Sök vidare i DiVA

Av författaren/redaktören
Gustafsson, MagnusHolmgren, Sverker
Av organisationen
Avdelningen för teknisk databehandlingTillämpad beräkningsvetenskap
Datavetenskap (datalogi)Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 941 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf