uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On a one-phase free boundary problem
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen.
2013 (Engelska)Ingår i: Annales Academiae Scientiarum Fennicae Mathematica, ISSN 1239-629X, E-ISSN 1798-2383, Vol. 38, nr 1, s. 181-191Artikel i tidskrift (Övrigt vetenskapligt) Published
Abstract [en]

In this paper we extend a result regarding the free boundary regularity in a one-phaseproblem, by De Silva and Jerison [DJ], to non-divergence linear equations of second order.Roughly speaking we prove that the free boundary is given by a Lipschitz graph.

Ort, förlag, år, upplaga, sidor
2013. Vol. 38, nr 1, s. 181-191
Nyckelord [en]
One-phase, free boundary, NTA, non-divergence, linear
Nationell ämneskategori
Matematisk analys
Forskningsämne
Matematik
Identifikatorer
URN: urn:nbn:se:uu:diva-186265DOI: 10.5186/aasfm.2013.3815ISI: 000316239200009OAI: oai:DiVA.org:uu-186265DiVA, id: diva2:572809
Tillgänglig från: 2012-11-30 Skapad: 2012-11-28 Senast uppdaterad: 2017-12-07Bibliografiskt granskad
Ingår i avhandling
1. Boundary Behavior of p-Laplace Type Equations
Öppna denna publikation i ny flik eller fönster >>Boundary Behavior of p-Laplace Type Equations
2013 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis consists of six scientific papers, an introduction and a summary. All six papers concern the boundary behavior of non-negative solutions to partial differential equations.

Paper I concerns solutions to certain p-Laplace type operators with variable coefficients. Suppose that u is a non-negative solution that vanishes on a part Γ of an Ahlfors regular NTA-domain. We prove among other things that the gradient Du of u has non-tangential limits almost everywhere on the boundary piece Γ, and that log|Du| is a BMO function on the boundary.  Furthermore, for Ahlfors regular NTA-domains that are uniformly (N,δ,r0)-approximable by Lipschitz graph domains we prove a boundary Harnack inequality provided that δ is small enough. 

Paper II concerns solutions to a p-Laplace type operator with lower order terms in δ-Reifenberg flat domains. We prove that the ratio of two non-negative solutions vanishing on a part of the boundary is Hölder continuous provided that δ is small enough. Furthermore we solve the Martin boundary problem provided δ is small enough.

In Paper III we prove that the boundary type Riesz measure associated to an A-capacitary function in a Reifenberg flat domain with vanishing constant is asymptotically optimal doubling.

Paper IV concerns the boundary behavior of solutions to certain parabolic equations of p-Laplace type in Lipschitz cylinders. Among other things, we prove an intrinsic Carleson type estimate for the degenerate case and a weak intrinsic Carleson type estimate in the singular supercritical case.

In Paper V we are concerned with equations of p-Laplace type structured on Hörmander vector fields. We prove that the boundary type Riesz measure associated to a non-negative solution that vanishes on a part Γ of an X-NTA-domain, is doubling on Γ.

Paper VI concerns a one-phase free boundary problem for linear elliptic equations of non-divergence type. Assume that we know that the positivity set is an NTA-domain and that the free boundary is a graph. Furthermore assume that our solution is monotone in the graph direction and that the coefficients of the equation are constant in the graph direction. We prove that the graph giving the free boundary is Lipschitz continuous.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2013. s. 68
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1035
Nyckelord
p-Laplace, Boundary Harnack inequality, A-harmonic, Ahlfors regularity, NTA-domains, Martin boundary, Reifenberg flat, Approximable by Lipschitz graphs, Subelliptic, Carleson estimate
Nationell ämneskategori
Matematisk analys
Forskningsämne
Matematik
Identifikatorer
urn:nbn:se:uu:diva-198008 (URN)978-91-554-8645-7 (ISBN)
Disputation
2013-05-24, Polhemsalen, Lägerhyddsvägen 1, Uppsala, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2013-05-03 Skapad: 2013-04-08 Senast uppdaterad: 2013-08-30

Open Access i DiVA

fulltext(231 kB)202 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 231 kBChecksumma SHA-512
5757a76ebeae46fc7142bbe51011589789a38e156eef8c81799a5affbcb5c28d41fb793bbab84533b755363a180e3f7c485b01cb1f91b8302e8e527f51afd3d3
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltexthttp://www.acadsci.fi/mathematica/

Personposter BETA

Avelin, Benny

Sök vidare i DiVA

Av författaren/redaktören
Avelin, Benny
Av organisationen
Matematiska institutionen
I samma tidskrift
Annales Academiae Scientiarum Fennicae Mathematica
Matematisk analys

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 212 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 609 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf