uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Comparative analysis of the use of chemoinformatics-based and substructure-based descriptors for quantitative structure-activity relationship (QSAR) modeling
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaci.
2013 (Engelska)Ingår i: Intelligent Data Analysis, ISSN 1088-467X, E-ISSN 1571-4128, Vol. 17, nr 2, s. 327-341Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Quantitative structure-activity relationship (QSAR) models have gained popularity in the pharmaceutical industry due to their potential to substantially decrease drug development costs by reducing expensive laboratory and clinical tests. QSAR modeling consists of two fundamental steps, namely, descriptor discovery and model building. Descriptor discovery methods are either based on chemical domain knowledge or purely data-driven. The former, chemoinformatics-based, and the latter, substructures-based, methods for QSAR modeling, have been developed quite independently. As a consequence, evaluations involving both types of descriptor discovery method are rarely seen. In this study, a comparative analysis of chemoinformatics-based and substructure-based approaches is presented. Two chemoinformatics-based approaches; ECFI and SELMA, are compared to five approaches for substructure discovery; CP, graphSig, MFI, MoFa and SUBDUE, using 18 QSAR datasets. The empirical investigation shows that one of the chemo-informatics-based approaches, ECFI, results in significantly more accurate models compared to all other methods, when used on their own. Results from combining descriptor sets are also presented, showing that the addition of ECFI descriptors to any other descriptor set leads to improved predictive performance for that set, while the use of ECFI descriptors in many cases also can be improved by adding descriptors generated by the other methods.

Ort, förlag, år, upplaga, sidor
2013. Vol. 17, nr 2, s. 327-341
Nyckelord [en]
QSAR modeling, chemical descriptors, graph mining
Nationell ämneskategori
Naturvetenskap Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:uu:diva-202987DOI: 10.3233/IDA-130581ISI: 000319344300010OAI: oai:DiVA.org:uu-202987DiVA, id: diva2:634723
Tillgänglig från: 2013-07-01 Skapad: 2013-07-01 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext
Av organisationen
Institutionen för farmaci
I samma tidskrift
Intelligent Data Analysis
NaturvetenskapDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 366 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf