uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A task parallel implementation of an RBF-generated finite difference method for the shallow water equations on the sphere
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Tillämpad beräkningsvetenskap.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
2014 (Engelska)Rapport (Övrigt vetenskapligt)
Ort, förlag, år, upplaga, sidor
2014.
Serie
Technical report / Department of Information Technology, Uppsala University, ISSN 1404-3203 ; 2014-011
Nationell ämneskategori
Datavetenskap (datalogi) Beräkningsmatematik
Identifikatorer
URN: urn:nbn:se:uu:diva-221156OAI: oai:DiVA.org:uu-221156DiVA, id: diva2:707881
Projekt
eSSENCEUPMARCTillgänglig från: 2014-04-03 Skapad: 2014-03-25 Senast uppdaterad: 2018-01-11Bibliografiskt granskad
Ingår i avhandling
1. Scientific Computing on Multicore Architectures
Öppna denna publikation i ny flik eller fönster >>Scientific Computing on Multicore Architectures
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Computer simulations are an indispensable tool for scientists to gain new insights about nature. Simulations of natural phenomena are usually large, and limited by the available computer resources. By using the computer resources more efficiently, larger and more detailed simulations can be performed, and more information can be extracted to help advance human knowledge.

The topic of this thesis is how to make best use of modern computers for scientific computations. The challenge here is the high level of parallelism that is required to fully utilize the multicore processors in these systems.

Starting from the basics, the primitives for synchronizing between threads are investigated. Hardware transactional memory is a new construct for this, which is evaluated for a new use of importance for scientific software: atomic updates of floating point values. The evaluation includes experiments on real hardware and comparisons against standard methods.

Higher level programming models for shared memory parallelism are then considered. The state of the art for efficient use of multicore systems is dynamically scheduled task-based systems, where tasks can depend on data. In such systems, the software is divided up into many small tasks that are scheduled asynchronously according to their data dependencies. This enables a high level of parallelism, and avoids global barriers.

A new system for managing task dependencies is developed in this thesis, based on data versioning. The system is implemented as a reusable software library, and shown to be as efficient or more efficient than other shared-memory task-based systems in experimental comparisons.

The developed runtime system is then extended to distributed memory machines, and used for implementing a parallel version of a software for global climate simulations. By running the optimized and parallelized version on eight servers, an equally sized problem can be solved over 100 times faster than in the original sequential version. The parallel version also allowed significantly larger problems to be solved, previously unreachable due to memory constraints.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2014. s. 47
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1139
Nyckelord
multicore, scientific computing, shared memory parallelism, task-based programming, parallel programming model, task scheduling, data versioning
Nationell ämneskategori
Programvaruteknik Beräkningsmatematik
Forskningsämne
Beräkningsvetenskap
Identifikatorer
urn:nbn:se:uu:diva-221241 (URN)978-91-554-8928-1 (ISBN)
Disputation
2014-05-23, Room 2446, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 10:15 (Engelska)
Opponent
Handledare
Projekt
UPMARCeSSENCE
Tillgänglig från: 2014-04-29 Skapad: 2014-03-26 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

http://www.it.uu.se/research/publications/reports/2014-011/

Personposter BETA

Tillenius, MartinLarsson, ElisabethLehto, Erik

Sök vidare i DiVA

Av författaren/redaktören
Tillenius, MartinLarsson, ElisabethLehto, Erik
Av organisationen
Avdelningen för beräkningsvetenskapTillämpad beräkningsvetenskapNumerisk analys
Datavetenskap (datalogi)Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 531 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf