uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Chondroitin Sulfate-Coated DNA-Nanoplexes Enhance Transfection Efficiency by Controlling Plasmid Release from Endosomes: A New Insight into Modulating Nonviral Gene Transfection
Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 25, nr 25, s. 3907-3915Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Degradation of plasmid DNA (pDNA) in the endosome compartment and its release to the cytosol are the major hurdles for efficient gene transfection. This is generally addressed by using transfection reagents that can overcome these limitations. In this article, the first report is presented which suggests that controlling the release of pDNA from endosome is the key for achieving efficient transfection. In this study, chondroitin sulfate (CS)-coated DNA-nanoplexes are developed using a modular approach where CS is coated post-pDNA/PEI nanoplex formation. To ensure good stability of the nanoplexes, imine/enamine chemistry is exploited by reacting aldehyde-modified chondroitin sulfate (CS-CHO) with free amines of pDNA/PEI complex. This supramolecular nanocarrier system displays efficient cellular uptake, and controlled endosomal pDNA release without eliciting any cytotoxicity. On the contrary, burst release of pDNA from endosome (using chloroqine) results in significant reduction in gene expression. Unlike pDNA/PEI-based transfection, the nanoparticle design presented here shows exceptional stability and gene transfection efficiency in different cell lines such as human colorectal cancer cells (HCT116), human embryonic kidney cells (HEK293), and mouse skin-derived mesenchymal stem cells (MSCs) using luciferase protein as a reporter gene. This new insight will be valuable in designing next generation of transfection reagents.

Ort, förlag, år, upplaga, sidor
2015. Vol. 25, nr 25, s. 3907-3915
Nyckelord [en]
chondroitin sulfate, endosomal escape, gene delivery, mesenchymal stem cells, nanoparticles
Nationell ämneskategori
Fysik Kemi
Identifikatorer
URN: urn:nbn:se:uu:diva-259095DOI: 10.1002/adfm.201500695ISI: 000357268900013OAI: oai:DiVA.org:uu-259095DiVA, id: diva2:843463
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammetTillgänglig från: 2015-07-28 Skapad: 2015-07-27 Senast uppdaterad: 2017-12-04Bibliografiskt granskad
Ingår i avhandling
1. New insights into principles of scaffolds design for bone application
Öppna denna publikation i ny flik eller fönster >>New insights into principles of scaffolds design for bone application
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis presents deeper insights into bone applicable biomaterials’ design. Poor affinity of BMP-2 towards scaffolds required supra-physiological dose administration. Though molecules containing sulfate could sustain BMP-2 release, side effects occurred due to BMP-2 supra-dose, or these sulfate-containing biomolecules.

Improved affinity between BMP-2 and scaffolds was first witnessed by using an acidic carrier (paper I). Hyaluronic acid (HA) hydrazone derived hydrogels having a pH of 4.5-loaded BMP-2 showed sustained release of bioactive BMP-2 in vitro and enhanced bone formation in vivo, while pH 7 HA hydrogels showed Fickian behavior and less bone formation in vivo. Computational evaluation revealed stronger electrostatic interactions between BMP-2, and HA were predominant at pH 4.5, whereas, weaker Van der Waals interactions played a key role at pH 7.

During the pre-bone formation phase, endogenous cell responses to pH 4.5 and 7 with or without BMP-2 were investigated. HA hydrogels exhibited extraordinary biocompatibility and recruitment of neutrophils, monocytes, macrophages and stromal cells regardless of hydrogels’ pH and BMP-2 presence.  The different inflammatory responses to HA hydrogels were observed (Appendix).

Thiol derivatives can cleave the disulfide bond of BMP-2 to generate inactive monomeric BMP-2. In paper II, thiol-acrylate chemistry-based HA hydrogels (HA-SH) were compared to hydrazone-based HA hydrogels as BMP-2 carriers. Thiol modified HA disrupted BMP-2 integrity and bioactivity. HA-SH hydrogels with BMP-2 exhibited less bioactive BMP-2 release in vitro and induced less bone formation in vivo.

Accumulated evidence has shown great osteogenic potential of lithium ions (Li). In paper III, we coordinated Li onto HA-PVA hydrazone hydrogels (Li-gel); Li-gel enhanced 3D cultured hMSCs osteogenic differentiation and induced higher bone formation in CAM defect model.

Instead of BMP-2 protein, delivery of BMP-2-coding-plasmid can produce BMP-2 over a long term at a closer physiological level. Yet, efficient gene delivery reagents are needed. In paper IV, two novel gene delivery nanoplexes were developed by post coating DNA-nanoplexes with chondroitin sulfate (CS). To ensure the stability, aldehyde-modified CS (CS-CHO) reacted with free amines of pDNA/PEI complexes. We provided first evidence that CS-CHO coated nanoplexes controlled the release from endosomes, which is essential for higher transfection efficiency.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2016. s. 87
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1459
Nyckelord
Chondroitin sulfate, hyaluronic acid, pH, cross-linking chemistry, bone morphogenetic protein, lithium, mesenchymal stem cell, in vivo.
Nationell ämneskategori
Medicinska material och protesteknik
Forskningsämne
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
urn:nbn:se:uu:diva-308318 (URN)978-91-554-9767-5 (ISBN)
Disputation
2017-01-17, Room 80121, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-12-20 Skapad: 2016-11-24 Senast uppdaterad: 2016-12-20

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Yan, HongjiPodiyan, OommenYu, DiHilborn, JönsVarghese, Oommen P.

Sök vidare i DiVA

Av författaren/redaktören
Yan, HongjiPodiyan, OommenYu, DiHilborn, JönsVarghese, Oommen P.
Av organisationen
Science for Life Laboratory, SciLifeLabPolymerkemiKlinisk immunologi
I samma tidskrift
Advanced Functional Materials
FysikKemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1046 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf