uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Microscale decoupling of sediment oxygen consumption and microbial biomass in an oligotrophic lake
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Helmholtz Ctr Environm Res, Dept Environm Microbiol, Leipzig, Germany.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
Helmholtz Ctr Environm Res, Dept Environm Microbiol, Leipzig, Germany.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.ORCID-id: 0000-0002-4265-1835
2016 (Engelska)Ingår i: Freshwater Biology, ISSN 0046-5070, E-ISSN 1365-2427, Vol. 61, nr 9, s. 1477-1491Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Sediments of aquatic ecosystems are hotspots for biological activity. Here, we address the question if, within surface sediments, oxygen consumption is linearly related to cell abundance. In addition, we identify habitat-specific factors influencing underlying microbial processes. Sediment microcosms were established from three sites within oligotrophic Lake angstrom nnsjon, Sweden, to use microsensors for measuring oxygen profiles and estimate spatially resolved oxygen consumption rates at the water-sediment interfaces. To evaluate differences between habitats, we measured sediment carbon content and C:N:P as a proxy for diagenetic state and organic matter bioavailability. Epifluorescence microscopy was used to assess the microscale distribution and size of surface-colonising microorganisms. There was no linear correlation between oxygen consumption rates and microbial cell abundances. Cell-specific respiration rates were highest in the profundal compared to the littoral- and inflow-sediment microcosms, whereas vertical variability in all these parameters was highest at the inflow, intermediate in the littoral and least variable in profundal sediments. Illumina sequencing of spatially resolved 16SrRNA genes was used to test for possible influence of bacterial diversity on spatially resolved oxygen consumption rates. Bacterial -diversity decreased over depth at each site, but was also lower in sediments from the most active profundal zones of the lake compared to the inflow. We suggest that bacteria in profundal sediments mainly use highly oxidised organic compounds, resulting in overall low growth yield despite high metabolic activity. In the lake inflow and the littoral, more reduced organic substrates of terrestrial origin are used at lower rates but with higher yield.

Ort, förlag, år, upplaga, sidor
2016. Vol. 61, nr 9, s. 1477-1491
Nyckelord [en]
Cell-specific respiration, Sediment microbiology, Macro- and Microenvironment heterogeneity, Environmental Microbiology
Nationell ämneskategori
Mikrobiologi Ekologi
Forskningsämne
Biologi med inriktning mot limnologi
Identifikatorer
URN: urn:nbn:se:uu:diva-261278DOI: 10.1111/fwb.12787ISI: 000380902400010OAI: oai:DiVA.org:uu-261278DiVA, id: diva2:857272
Forskningsfinansiär
VetenskapsrådetForskningsrådet FormasTillgänglig från: 2015-09-28 Skapad: 2015-09-01 Senast uppdaterad: 2017-12-01Bibliografiskt granskad
Ingår i avhandling
1. Microbial adaptations and controlling mechanisms of surface-associated microhabitat heterogeneity in aquatic systems
Öppna denna publikation i ny flik eller fönster >>Microbial adaptations and controlling mechanisms of surface-associated microhabitat heterogeneity in aquatic systems
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Habitat heterogeneity is a driving factor for speciation and ecosystem functioning and is well studied in macro-ecology. Yet our understanding of microbial adaptations, and governing processes is incomplete. The here presented thesis aims at giving us a better understanding of patterns in micro-heterogeneity, and microbial adaptations to such heterogeneity with particular focus on surface-dominated, aquatic habitats. The most prominent microbial adaptation to surface associated mode of life is biofilm formation. Biofilms rely heavily on type IV pili. These pili systems are well studied in Bacteria, but largely unknown in Archaea. Therefore, the first part of this thesis focuses on resolving genetic and structural feature of the type IV like aap-pilus of the thermo-acidophilic Sulfolobus acidocaldarius. We found the aap-pilus to be indispensible for biofilm formation, and to be unparalleled in variability of its quaternary structure and cross regulation with other filaments. The second part of this thesis investigates particle colonization in the water column, focusing on diatoms as a model system, allowing an in situ assessment of different stages of particle colonization, and potential particle-specificity of the associated bacterial community. Opposing reports from marine systems, we did not observe diatom-specificity in the associated bacterial community. Instead we found bacterial community subsets, one likely originating from sediment resuspension, and the other being controlled by biofilm-forming populations (e.g. Flexibacter), able to attach to newly formed particle surfaces and subsequently facilitate secondary colonization by other bacteria. Finally, the habitat heterogeneity in top-layers of lake sediments were investigated in experimental microcosms. Cell-specific oxygen consumption rates were determined, to assess microbial activity across different scales. Individual activity rates differed strongly across all investigated scales, likely due to spatially heterogeneous distribution of nutrients with differing quality. Vice versa, the influence of microbial activity on micro-habitat-heterogeneity was investigated. We correlated sediment redox-state with bacterial community composition and populations. Our results indicate that habitat heterogeneity is generally beneficial for microorganism, and greater heterogeneity results in greater bacterial diversity. However, this heterogeneity-diversity relationship is limited and microorganisms actively stabilize their immediate redox environment to a preferred, community-specific, stable state, if cell abundances exceed a minimum threshold.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2015. s. 69
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1296
Nyckelord
microbial habitat heterogeneity
Nationell ämneskategori
Biologiska vetenskaper
Forskningsämne
Biologi med inriktning mot limnologi
Identifikatorer
urn:nbn:se:uu:diva-263206 (URN)978-91-554-9351-6 (ISBN)
Disputation
2015-11-20, Ekman Salen, Norbyvägen 14, Uppsala, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2015-10-27 Skapad: 2015-09-28 Senast uppdaterad: 2015-11-10

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Jeske, Jan Torsten

Sök vidare i DiVA

Av författaren/redaktören
Jeske, Jan TorstenBertilsson, Stefan
Av organisationen
Limnologi
I samma tidskrift
Freshwater Biology
MikrobiologiEkologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 452 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf