uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature
CHUV, Dept Fundamental Oncol, CH-1066 Epalinges, Switzerland.;Univ Lausanne, CH-1066 Epalinges, Switzerland..
CHUV, Dept Fundamental Oncol, CH-1066 Epalinges, Switzerland.;Univ Lausanne, CH-1066 Epalinges, Switzerland..
CHUV, Dept Fundamental Oncol, CH-1066 Epalinges, Switzerland.;Univ Lausanne, CH-1066 Epalinges, Switzerland..
Hamamatsu Univ Sch Med, Hamamatsu, Shizuoka 4313192, Japan..
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: Journal of Clinical Investigation, ISSN 0021-9738, E-ISSN 1558-8238, Vol. 125, nr 10, s. 3861-3877Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.

Ort, förlag, år, upplaga, sidor
2015. Vol. 125, nr 10, s. 3861-3877
Nationell ämneskategori
Klinisk medicin
Identifikatorer
URN: urn:nbn:se:uu:diva-265686DOI: 10.1172/JCI80454ISI: 000362311700017PubMedID: 26389677OAI: oai:DiVA.org:uu-265686DiVA, id: diva2:866783
Forskningsfinansiär
NIH (National Institute of Health), HL-120867EU, FP7, Sjunde ramprogrammet, 317250Tillgänglig från: 2015-11-03 Skapad: 2015-11-02 Senast uppdaterad: 2017-12-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Mäkinen, Taija

Sök vidare i DiVA

Av författaren/redaktören
Mäkinen, Taija
Av organisationen
Vaskulärbiologi
I samma tidskrift
Journal of Clinical Investigation
Klinisk medicin

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 613 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf