uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
PM2.5 Monitoring using Images from Smartphones in Participatory Sensing
Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China.
Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datorteknik.
Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China.
Visa övriga samt affilieringar
2015 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Air pollution has become one of the most pressing environmental issues in many countries, including China. Fine-grained PM2.5 particulate data can prevent people from long time exposure and advance scientific research. However, existing monitoring systems with PM2.5 stationary sensors are expensive, which can only provide pollution data at sparse locations. In this paper we demonstrate for the first time that camera on smartphones can be used for low-cost and fine-grained PM2.5 monitoring in participatory sensing. We propose a LearningBased method to extract air quality related features from images taken by smartphones. These image features will be used to build the haze model that can estimate PM2.5 concentration depending on the reference sensors. We conducted extensive experiments over six months with two datasets to demonstrate the performance of the proposed solution using different models of smartphones. We believe that our findings will give profound impact in many research fields, including mobile sensing, activity scheduling, haze data collection and analysis.

Ort, förlag, år, upplaga, sidor
2015. s. 630-635
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:uu:diva-272222ISI: 000380561200149ISBN: 9781467371315 (tryckt)OAI: oai:DiVA.org:uu-272222DiVA, id: diva2:893526
Konferens
IEEE SmartCity Workshop in Conjuction with IEEE Infocom
Tillgänglig från: 2016-01-12 Skapad: 2016-01-12 Senast uppdaterad: 2016-09-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Ngai, Edith

Sök vidare i DiVA

Av författaren/redaktören
Ngai, Edith
Av organisationen
Datorteknik
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 667 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf