uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evidence for the critical role of a secondary site rpoB mutation in the compensatory evolution and successful transmission of an MDR tuberculosis outbreak strain
Univ Tunis El Manar, Inst Pasteur Tunis, Lab Mol Microbiol Vaccinol & Biotechnol Dev, Unit Typing & Genet Mycobacteria, Tunis, Tunisia.
Univ Tunis El Manar, Inst Pasteur Tunis, Lab Mol Microbiol Vaccinol & Biotechnol Dev, Unit Typing & Genet Mycobacteria, Tunis, Tunisia.
Univ Tunis El Manar, Inst Pasteur Tunis, Lab Mol Microbiol Vaccinol & Biotechnol Dev, Unit Typing & Genet Mycobacteria, Tunis, Tunisia.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: Journal of Antimicrobial Chemotherapy, ISSN 0305-7453, E-ISSN 1460-2091, Vol. 71, nr 2, s. 324-332Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background MDR Mycobacterium tuberculosis clinical strains that cause large outbreaks, particularly among HIV-negative patients, are likely to have undergone the most successful compensatory evolution. Hence, mutations secondary to the acquisition of drug resistance are worthy of consideration in these highly transmissible strains. Here, we assessed the role of a mutation within rpoBrpoB V615M, secondary to the rifampicin resistance-conferring mutation rpoB S531L, which is associated with a major MDR tuberculosis outbreak strain that evolved in an HIV-negative context in northern Tunisia.

Methods Using BCG as a model organism, we engineered strains harbouring either the rpoB S531L mutation alone or the double mutation rpoB S531L, V615M. Individual and competitive in vitro growth assays were performed in order to assess the relative fitness of each BCG mutant.

Results The rpoB V615M mutation was found to be invariably associated with rpoB S531L. Structural analysis mapped rpoB V615M to the same bridge helix region as rpoB compensatory mutations previously described in Salmonella. Compared with the rpoB single-mutant BCG, the double mutant displayed improved growth characteristics and fitness rates equivalent to WT BCG. Strikingly, the rpoB double mutation conferred high-level resistance to rifampicin.

Conclusions Here, we demonstrated the fitness compensatory role of a mutation within rpoB, secondary to the rifampicin resistance mutation rpoB S531L, which is characteristic of an MDR M. tuberculosis major outbreak strain. The finding that this secondary mutation concomitantly increased the resistance level to rifampicin argues for its significant contribution to the successful transmission of the MDR-TB strain.

Ort, förlag, år, upplaga, sidor
2016. Vol. 71, nr 2, s. 324-332
Nyckelord [en]
M. tuberculosis, rpoB, compensatory evolution
Nationell ämneskategori
Mikrobiologi
Forskningsämne
Mikrobiologi
Identifikatorer
URN: urn:nbn:se:uu:diva-276455DOI: 10.1093/jac/dkv345ISI: 000372427600007PubMedID: 26538504OAI: oai:DiVA.org:uu-276455DiVA, id: diva2:903078
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, 245 872Tillgänglig från: 2016-02-13 Skapad: 2016-02-13 Senast uppdaterad: 2017-11-30Bibliografiskt granskad
Ingår i avhandling
1. Biased Evolution: Causes and Consequences
Öppna denna publikation i ny flik eller fönster >>Biased Evolution: Causes and Consequences
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In evolution alternative genetic trajectories can potentially lead to similar phenotypic outcomes. However, certain trajectories are preferred over others. These preferences bias the genomes of living organisms and the underlying processes can be observed in ongoing evolution.

We have studied a variety of biases that can be found in bacterial chromosomes and determined the selective causes and functional consequences for the cell. We have quantified codon usage bias in highly expressed genes and shown that it is selected to optimise translational speed. We further demonstrated that the resulting differences in decoding speed can be used to regulate gene expression, and that the use of ‘non-optimal’ codons can be detrimental to reading frame maintenance. Biased gene location on the chromosome favours recombination between genes within gene families and leads to co-evolution. We have shown that such recombinational events can protect these gene families from inactivation by mobile genetic elements, and that chromosome organization can be selectively maintained because inversions can lead to the formation of unstable hybrid operons.

We have used the development of antibiotic resistance to study how different bacterial lifestyles influence evolutionary trajectories. For this we used two distinct pairs of antibiotics and disease-causing bacteria, namely (i) Mycobacterium tuberculosis that is treated with rifampicin and (ii) Escherichia coli that is treated with ciprofloxacin. We have shown that in the slow-growing Mycobacterium tuberculosis, resistance mutations are selected for high-level resistance. Fitness is initially less important, and over time fitness costs can be ameliorated by compensatory mutations. The need for rapid growth causes the selection of ciprofloxacin resistance in Escherichia coli not only to be selected on the basis of high-level resistance but also on high fitness. Compensatory evolution is therefore not required and is not observed.

Taken together, our results show that the evolution of a phenotype is the product of multiple steps and that many factors influence which trajectory is the most likely to occur and be most beneficial. Over time, selection will favour this particular trajectory and lead to biased evolution, affecting genome sequence and organization.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2016. s. 48
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1198
Nyckelord
Evolution, Codon usage bias, Post-transcriptional regulation, Recombination, Inversion, EF-Tu, Frameshift suppression, Antibiotic resistance, Rifampicin, Ciprofloxacin, Compensatory evolution, Drug efflux, RNA polymerase, DNA gyrase
Nationell ämneskategori
Mikrobiologi
Forskningsämne
Mikrobiologi
Identifikatorer
urn:nbn:se:uu:diva-276456 (URN)978-91-554-9518-3 (ISBN)
Disputation
2016-05-09, A1:107a, BMC, Husargatan 3, Uppsala, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-04-13 Skapad: 2016-02-13 Senast uppdaterad: 2016-04-21

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Brandis, GerritHughes, Diarmaid

Sök vidare i DiVA

Av författaren/redaktören
Brandis, GerritHughes, Diarmaid
Av organisationen
Institutionen för medicinsk biokemi och mikrobiologi
I samma tidskrift
Journal of Antimicrobial Chemotherapy
Mikrobiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 1035 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf