uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A microcircuit analysis of motor neuron behaviour during fictive locomotion
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap. Uppsala University. (Klas Kullander Group, Unit of Developmental Genetics)ORCID-id: 0000-0001-9768-9462
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nyckelord [en]
Spinal motor neuron, fictive-locomotion
Nationell ämneskategori
Neurovetenskaper
Identifikatorer
URN: urn:nbn:se:uu:diva-280052OAI: oai:DiVA.org:uu-280052DiVA, id: diva2:909599
Forskningsfinansiär
HjärnfondenTillgänglig från: 2016-03-07 Skapad: 2016-03-07 Senast uppdaterad: 2018-01-10
Ingår i avhandling
1. Functional Imaging of Spinal Locomotor Networks
Öppna denna publikation i ny flik eller fönster >>Functional Imaging of Spinal Locomotor Networks
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Movement is necessary for the survival of most animals. The spinal cord contains neuronal networks that are capable of motor coordination and of producing different movements. In particular, a very reduced neuronal network in the spinal cord can produce simple rhythmic outputs even in the absence of descending or sensory inputs. This basic circuit was discovered by Thomas Graham Brown (reported in 1911) and is termed central pattern generator. For over a century a large number of studies have been carried out in order to identify the neuronal components that are part of these networks.

In project 1 we focused on Renshaw cells, which are a population of spinal interneurons expressing the alpha-2 subunit of the nicotinic acetylcholine receptors (Chrna2). Renshaw cells are the only identified central targets for motor neuron inputs, and in turn they mediate inhibition of the motor neurons. We analyzed the activity pattern of Renshaw cells on a cell-population level in neonates when the circuit is still developing. At segment 1 of the lumbar spinal cord, Renshaw cells show significantly greater activity response to functional sensory and motor inputs from rostral compared to the caudal segments. Contrarily, the suppression of the monosynaptic stretch reflex was more pronounced when caudal roots were stimulated. Our data underline the importance of sensory input during motor circuit development and help to understand the functional organization of Renshaw cell connectivity.

Several neurons that play distinct roles in locomotor central pattern generation have been identified with the help of genetics. For instance, the V0 population of spinal interneurons are identified by the expression of transcription factor developing brain homeobox 1 (Dbx1). V0 neurons are necessary for producing an alternating rhythm at all locomotor speeds. In project 2 we have looked at a population of dorsally derived ventrally projecting interneurons that express the transcription factor doublesex and mab-3 related transcription factor 3 (Dmrt3). On a behavioral level Dmrt3 neurons are involved in regulating coordination across different locomotor speeds. On a microcircuit level, we have shown that individual Dmrt3 neurons show distinct frequencies of oscillations for a constant locomotor rhythm. In addition, removal of inhibitory neurotransmission from Dmrt3 neurons results in uncoupling of rhythm in motor neurons.

In project 3 the activity patterns in populations of flexor related motor neurons are characterized during fictive locomotion in neonatal mice. An interesting and intriguing finding in project 3 is the presence of multiple rhythmicities in motor neurons. Multiple rhythmicities are seen even when the locomotor output shows a constant frequency.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2016. s. 47
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1190
Nyckelord
Central pattern generators, two-photon microscopy, locomotor rhythm, multiple rhythmicities, inhibitory neurotransmission
Nationell ämneskategori
Neurovetenskaper
Forskningsämne
Neurovetenskap
Identifikatorer
urn:nbn:se:uu:diva-280062 (URN)978-91-554-9500-8 (ISBN)
Disputation
2016-04-27, B22, Biomedical Centre, Uppsala, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-04-06 Skapad: 2016-03-07 Senast uppdaterad: 2018-01-10

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

NAGARAJA, CHETAN

Sök vidare i DiVA

Av författaren/redaktören
NAGARAJA, CHETAN
Av organisationen
Institutionen för neurovetenskap
Neurovetenskaper

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 197 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf