uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Conducting redox polymers with non-activated charge transport properties
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Organisk kemi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik.ORCID-id: 0000-0002-6218-3039
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
Vise andre og tillknytning
2017 (engelsk)Inngår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, nr 36, s. 25052-25058Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Non-activated charge transport has been demonstrated in terephthalate-functionalized conducting redox polymers. The transition from a temperature-activated conduction mechanism to a residual scattering mechanism was dependent on the doping level. The latter mechanism is associated with apparent negative activation barriers to charge transport and is generally found in polymer materials with a high degree of order. Crystallographic data, however, suggested a low degree of order in this polymer, indicating the existence of interconnected crystal domains in the predominantly amorphous polymer matrix through which the charge was transported. We have thus shown that the addition of bulky pendant groups to conducting polymers does not prevent efficient charge transport via the residual scattering mechanism with low barriers to charge transport.

sted, utgiver, år, opplag, sider
Royal Society of Chemistry, 2017. Vol. 19, nr 36, s. 25052-25058
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
URN: urn:nbn:se:uu:diva-304625DOI: 10.1039/c7cp03939eISI: 000411606200067PubMedID: 28879367OAI: oai:DiVA.org:uu-304625DiVA, id: diva2:1033253
Forskningsfinansiär
Swedish Research CouncilSwedish Foundation for Strategic Research Stiftelsen Olle Engkvist ByggmästareEU, Horizon 2020, 64431Swedish Energy AgencyTilgjengelig fra: 2016-10-06 Laget: 2016-10-06 Sist oppdatert: 2018-06-04bibliografisk kontrollert
Inngår i avhandling
1. Terephthalate-Functionalized Conducting Redox Polymers for Energy Storage Applications
Åpne denne publikasjonen i ny fane eller vindu >>Terephthalate-Functionalized Conducting Redox Polymers for Energy Storage Applications
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Organic electrode materials, as sustainable and environmental benign alternatives to inorganic electrode materials, show great promise for achieving cheap, light, versatile and disposable devices for electrical energy storage applications. Conducting redox polymers (CRPs) are a new class of organic electrode materials where the charge storage capacity is provided by the redox chemistry of functional pendent groups and electronic conductivity is provided by the doped conducting polymer backbone, enabling the production of energy storage devices with high charge storage capacity and high power capability. This pendant-conducting polymer backbone combination can solve two of the main problems associated with organic molecule-based electrode materials, i.e. the dissolution of the active material and the sluggish charge transport within the material. In this thesis, diethyl terephthalate and polythiophenes were utilized as the pendant and the backbone, respectively. The choice of pendant-conducting polymer backbone combination was based on potential match between the two moieties, i.e. the redox reaction of terephthalate pendent groups and the n-doping of polythiophene backbone occur in the same potential region. The resulting CRPs exhibited fast charge transport within the polymer films and low activation energies involved charge propagation through these materials. In the design of these CRPs an unconjugated link between the pendant and the backbone was found to be advantageous in terms of the polymerizability of the monomers and for the preservation of individual redox activity of the pendants and the polymer chain in CRPs. The functionalized materials were specifically designed as anode materials for energy storage applications and, although insufficient cycling stability was observed, the work presented in this thesis demonstrates that the combination of redox active functional groups with conducting polymers, forming CRPs, shows promise for the development of organic matter-based electrical energy storage materials.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2016. s. 60
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1437
Emneord
conducting polymers, terephthalate, polythiophene, PEDOT, conductance
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-304628 (URN)978-91-554-9715-6 (ISBN)
Disputas
2016-11-24, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:30 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2016-11-08 Laget: 2016-10-06 Sist oppdatert: 2016-11-16
2. Conducting Redox Polymers for Electrode Materials: Synthetic Strategies and Electrochemical Properties
Åpne denne publikasjonen i ny fane eller vindu >>Conducting Redox Polymers for Electrode Materials: Synthetic Strategies and Electrochemical Properties
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Organic electrode materials represent an intriguing alternative to their inorganic counterparts due to their sustainable and environmental-friendly properties. Their plastic character allows for the realization of light-weight, versatile and disposable devices for energy storage. Conducting redox polymers (CRPs) are one type of the organic electrode materials involved, which consist of a π-conjugated polymer backbone and covalently attached redox units, the so-called pendant. The polymer backbone can provide conductivity while it is oxidized or reduced (i. e., p- or n-doped) and the concurrent redox chemistry of the pendant provides charge capacity. The combination of these two components enables CRPs to provide both high charge capacity and high power capability. This dyad polymeric framework provides a solution to the two main problems associated with organic electrode materials based on small molecules: the dissolution of the active material in the electrolyte, and the sluggish charge transport within the material. This thesis introduces a general synthetic strategy to obtain the monomeric CRPs building blocks, followed by electrochemical polymerization to afford the active CRPs material. The choice of pendant and of polymer backbone depends on the potential match between these two components, i.e. the redox reaction of the pendant and the doping of backbone occurring within the same potential region. In the thesis, terephthalate and polythiophene were selected as the pendant and polymer backbone respectively, to get access to low potential CRPs. It was found that the presence of a non-conjugated linker between polymer backbone and pendant is essential for the polymerizability of the monomers as well as for the preservation of individual redox activities. The resulting CRPs exhibited fast charge transport within the polymer film and low activation barriers for charge propagation. These low potential CRPs were designed as the anode materials for energy storage applications. The combination of redox active pendant as charge carrier and a conductive polymer backbone reveals new insights into the requirements of organic matter based electrical energy storage materials.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 83
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1604
Emneord
Organic electrode material, Energy storage, Conducting redox polymer, Polythiophene, Terephthalate, PEDOT
HSV kategori
Forskningsprogram
Kemi med inriktning mot organisk kemi
Identifikatorer
urn:nbn:se:uu:diva-334562 (URN)978-91-513-0168-6 (ISBN)
Disputas
2018-01-19, B41, BMC, Husargatan, Uppsala, 09:15 (engelsk)
Opponent
Veileder
Forskningsfinansiär
SweGRIDS - Swedish Centre for Smart Grids and Energy StorageSwedish Research CouncilSwedish Foundation for Strategic Research
Tilgjengelig fra: 2017-12-21 Laget: 2017-11-23 Sist oppdatert: 2018-03-08

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Yang, LiHuang, XiaoMamedov, FikretZhang, PengGogoll, AdolfStrömme, MariaSjödin, Martin

Søk i DiVA

Av forfatter/redaktør
Yang, LiHuang, XiaoMamedov, FikretZhang, PengGogoll, AdolfStrömme, MariaSjödin, Martin
Av organisasjonen
I samme tidsskrift
Physical Chemistry, Chemical Physics - PCCP

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 469 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf