uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Exponentially Small Splitting of Separatrices and Transversality Associated to Whiskered Tori with Quadratic Frequency Ratio
Univ Politecn Cataluna, Dept Matemat, Barcelona 08028, Spain..
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Tillämpad matematik och statistik.
Univ Politecn Cataluna, Dept Matemat, Barcelona 08028, Spain..
2016 (engelsk)Inngår i: SIAM Journal on Applied Dynamical Systems, ISSN 1536-0040, E-ISSN 1536-0040, Vol. 15, nr 2, s. 981-1024Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The splitting of invariant manifolds of whiskered (hyperbolic) tori with two frequencies in a nearly integrable Hamiltonian system, whose hyperbolic part is given by a pendulum, is studied. We consider a torus with a fast frequency vector w/root epsilon with w = (1, Omega), where the frequency ratio Omega is a quadratic irrational number. Applying the Poincare-Melnikov method, we carry out a careful study of the dominant harmonics of the Melnikov potential. This allows us to provide an asymptotic estimate for the maximal splitting distance and show the existence of transverse homoclinic orbits to the whiskered tori with an asymptotic estimate for the transversality of the splitting. Both estimates are exponentially small in epsilon, with the functions in the exponents being periodic with respect to Ins, and can be explicitly constructed from the continued fraction of Omega. In this way, we emphasize the strong dependence of our results on the arithmetic properties of Omega. In particular, for quadratic ratios Omega with a 1-periodic or 2-periodic continued fraction (called metallic and metallic-colored ratios, respectively), we provide accurate upper and lower bounds for the splitting. The estimate for the maximal splitting distance is valid for all sufficiently small values of epsilon, and the transversality can be established for a majority of values of epsilon, excluding small intervals around some transition values where changes in the dominance of the harmonics take place, and bifurcations could occur.

sted, utgiver, år, opplag, sider
2016. Vol. 15, nr 2, s. 981-1024
Emneord [en]
splitting of separatrices, transverse homoclinic orbits, Melnikov integrals, quadratic frequency ratio
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-308065DOI: 10.1137/15M1032776ISI: 000385262100011OAI: oai:DiVA.org:uu-308065DiVA, id: diva2:1050991
Forskningsfinansiär
Knut and Alice Wallenberg Foundation, 2013-0315Tilgjengelig fra: 2016-11-30 Laget: 2016-11-23 Sist oppdatert: 2017-11-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst
Av organisasjonen
I samme tidsskrift
SIAM Journal on Applied Dynamical Systems

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 521 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf