uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
RNA sequencing provides insight into metabolic dysfunction of hybrids between a recently diverged songbird species pair
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.ORCID iD: 0000-0002-0706-458x
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Hybrid dysfunction is thought to gradually build up through the accumulation of clashes between genes as they diverge between the parental species. However, analyses of genetic incompatibilities are generally biased towards long diverged species that are kept under laboratory conditions. Here, we used RNAseq to evaluate 1) whether there was differential gene expression between naturally occurring Ficedula flycatcher hybrids and parental species in energetically expensive alimentary organs, and 2) if such differential gene expression was, based on Gene Ontology (GO) terms, functionally related to Resting Metabolic Rate (RMR) and energy production. We found substantial differential gene expression in all pairwise contrasts, but fewer functional differences between the parental species than between hybrids and either parental species. Some of the differentially expressed genes underlay the OXPHOS pathway, and significantly more than expected GO terms associated with metabolic function were differentially expressed between hybrids and either parental species in the liver. Our results corroborate the idea that tightly co-evolved mitochondrial and nuclear genes underlying the Oxidative Phosphorylation (OXPHOS) pathway can become miss-matched in hybrids and cause malfunctioning phenotypes. Mitonuclear interactions affecting OXPHOS have the potential to both quickly diverge in allopatry as populations adapt to different climate regimes and to cause hybrid genetic dysfunction at secondary contact 

Keywords [en]
Dobzhansky Muller interactions, RNA seq, mitonuclear incompatibility, genetic incompatibility, Resting metabolic rate, hybrid, Ficedula flycatcher
National Category
Evolutionary Biology Genetics
Identifiers
URN: urn:nbn:se:uu:diva-309968OAI: oai:DiVA.org:uu-309968DiVA, id: diva2:1053220
Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2018-08-10
In thesis
1. Speciation and Metabolic rate: Insights from an avian hybrid zone
Open this publication in new window or tab >>Speciation and Metabolic rate: Insights from an avian hybrid zone
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The role of divergent climate adaptation in speciation has received surprisingly little scientific attention. My dissertation research focused on how resting metabolic rate (RMR) relates to the build up of prezygotic and postzygotic isolation in a natural Ficedula flycatcher hybrid zone. RMR is the amount of energy an organism needs to run its internal organs. Since RMR is related to life history traits and thermoregulation in other systems, it is likely to affect speciation processes at secondary contact. I found that adult collared flycatchers displace pied flycatchers into increasingly poor habitats (Paper I). Pied nestlings exhibit lower RMR in poor environments (Paper II), which may promote regional coexistence and habitat isolation by making it possible for pied flycatchers to escape competition from collared flycatchers and reduce the risk of hybridization by breeding in the poorer habitats. Further, I found that while collared flycatcher nestling RMR was not environmentally-dependent (Paper II, Paper III), those collared flycatcher nestlings that had a lower RMR in poor environments tended to have higher condition (Paper III). Further, RMR was genetically linked to a sexual ornament in collared males that has previously been shown to be beneficial in poor environments. Lastly, I found that by seven days old, nestlings increase their metabolic rate when listening to song, indicating that they are listening, and by 9 days they can discriminate between songs (Paper IV). Taken together, RMR could affect pre-zygotic isolation via correlations with life history strategies, song and sexual ornaments. RMR is also related to post zygotic isolation in Ficedula flycatchers. I found that flycatcher hybrids tended to have a higher RMR than the parental species (Paper V), and that there were many differentially expressed genes in energetically expensive organs in hybrids that were related to metabolic function (Paper VI). Thus, metabolic dysfunction, possibly caused by genetic incompatibilities, in Ficedula flycatcher hybrids could be a factor leading to infertility and postzygotic isolation between the parental species. Overall, I find that RMR could be a general physiological trait that affects both pre- and postzygotic isolation in hybridizing species at secondary contact, and ought to be more thoroughly considered in speciation research. 

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. p. 43
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1462
Keywords
resting metabolic rate, life history, hybridization, speciation, reproductive isolation, Ficedula flycatcher
National Category
Ecology Evolutionary Biology Genetics
Research subject
Biology with specialization in Animal Ecology
Identifiers
urn:nbn:se:uu:diva-309969 (URN)978-91-554-9776-7 (ISBN)
Public defence
2017-02-10, Zootissalen, Villavägen 9, Uppsala, 10:00 (English)
Opponent
Supervisors
Available from: 2017-01-19 Created: 2016-12-08 Last updated: 2018-08-10

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
McFarlane, S. Eryn
By organisation
Animal ecologyEvolutionary Biology
Evolutionary BiologyGenetics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 566 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf