uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fracture strength of glass chips for high-pressure microfluidics
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.ORCID-id: 0000-0002-3966-0220
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.ORCID-id: 0000-0003-2744-1634
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
2016 (engelsk)Inngår i: Journal of Micromechanics and Microengineering, ISSN 0960-1317, E-ISSN 1361-6439, Vol. 26, nr 9, artikkel-id 095009Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

High-pressure microfluidics exposes new areas in chemistry. In this paper, the reliability of transparent borosilicate glass chips is investigated. Two designs of circular cavities are used for fracture strength tests, either 1.6 mm wide with rounded corners to the fluid inlets, or 2.0 mm wide with sharp inlet corners. Two kinds of tests are done, either short-term,e.g. pressurization to fracture at room temperature, or long-term, with fracture at constant pressurization for up to one week, in the temperature region 11–125 °C. The speed of crack fronts is measured using a high-speed camera. Results show fracture stresses in the range of 129 and 254 MPa for short-term measurements. Long-term measurements conclude the presences of a temperature and stress dependent delayed fracture. For a reliability ofone week at 11–38 °C, a pressure limit is found at the lower end of the short-term measurements, or 15% lower than the average. At 80 °C, this pressure limit is 45% lower. Crack speeds are measured to be 10−5 m s-1 during short-term fracture. These measurements are comparable with estimations based on slow crack growth and show that the growth affects the reliability of glass chips. This effect is strongly affected by high temperatures, thus lowers the operating window of high-pressure glass microfluidic devices.

sted, utgiver, år, opplag, sider
2016. Vol. 26, nr 9, artikkel-id 095009
Emneord [en]
glass, fracture strength, high pressure microfluidics, crack growth, temperature dependence
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot mikrosystemteknik
Identifikatorer
URN: urn:nbn:se:uu:diva-309983DOI: 10.1088/0960-1317/26/9/095009ISI: 000402408400009OAI: oai:DiVA.org:uu-309983DiVA, id: diva2:1054638
Forskningsfinansiär
Swedish Research Council, 2011:5037Knut and Alice Wallenberg FoundationTilgjengelig fra: 2016-12-08 Laget: 2016-12-08 Sist oppdatert: 2018-06-19bibliografisk kontrollert
Inngår i avhandling
1. Microfluidics at High Pressures: Understanding, Sensing, and Control
Åpne denne publikasjonen i ny fane eller vindu >>Microfluidics at High Pressures: Understanding, Sensing, and Control
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis explores understanding, sensing, and control in high-pressure microfluidics. The high-pressure regime allows fluids to be forced through narrow channels at substantial speed and creates conditions for fluids of high density and low viscosity—features desired in flow-based chemical analyses. With changes to pressure and temperature, fluid properties vary, and for miniaturized flow systems, sensing and control are needed.

For miniaturized chemical analytics to utilize high-pressure fluids, like supercritical CO2, sensors are required for flow characterization. In this thesis, high-pressure tolerant sensors in glass chips have been developed and investigated. By the use of chip-integrated temperature, flow, and relative permittivity sensors, the variable behavior of supercritical CO2 or binary component CO2-alcohol mixtures have been investigated. To be able to change flow rates, a heat-based actuator chip has been developed. By a flow control system, which combines a relative permittivity sensor and heat actuated flow regulators on a modular system, the composition of binary component CO2-alcohol mixtures can be tuned and controlled with feedback.

Flows of multiphase CO2-H2O hold promise for miniaturized extraction systems. In this thesis, parallel multiphase CO2-H2O flow has been studied. To achieve control, methods have been investigated where channels have been modified by the introduction of a guiding ridge and altered by a chemical coating. Flow is a dynamic process, where pressure and temperature can vary with time and place. As the properties of fluids containing CO2 may change with pressure and temperature, properties will also change with time and place. Because of this, instruments with spatial and temporal resolution are needed to better understand dynamic chemical effects at flow. In this thesis, a tool is presented to study the dynamic acidification of aqueous solutions that come in contact with flowing CO2.

By a study performed to understand the strength and pressure tolerance of glass chips, it has been found that the fracture is not only determined by the applied pressure, but also on time and environment.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 60
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1687
Emneord
High-pressure microfluidics, supercritical CO2, compressible flow, relative permittivity, integrated electrodes
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot mikrosystemteknik
Identifikatorer
urn:nbn:se:uu:diva-353964 (URN)978-91-513-0372-7 (ISBN)
Disputas
2018-09-14, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-08-21 Laget: 2018-06-19 Sist oppdatert: 2018-08-27

Open Access i DiVA

fulltext(486 kB)253 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 486 kBChecksum SHA-512
0b20f32cc1b848d933922464589cdf9f8ae048900bba567025fc04590a4485a55098db1fbf07b67a491e875d1c28ebc0f28dcd7164bed8023cb498f66f900991
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Andersson, MartinHjort, KlasKlintberg, Lena

Søk i DiVA

Av forfatter/redaktør
Andersson, MartinHjort, KlasKlintberg, Lena
Av organisasjonen
I samme tidsskrift
Journal of Micromechanics and Microengineering

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 253 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 938 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf