uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Thin film metal sensors in fusion bonded glass chips for high-pressure microfluidics
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.ORCID-id: 0000-0002-3966-0220
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
Vise andre og tillknytning
2017 (engelsk)Inngår i: Journal of Micromechanics and Microengineering, ISSN 0960-1317, E-ISSN 1361-6439, Vol. 27, nr 1, artikkel-id 015018Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

High-pressure microfluidics offers fast analyses of thermodynamic parameters for compressed process solvents. However, microfluidic platforms handling highly compressible supercritical CO2 are difficult to control, and on-chip sensing would offer added control of the devices. Therefore, there is a need to integrate sensors into highly pressure tolerant glass chips. In this paper, thin film Pt sensors were embedded in shallow etched trenches in a glass wafer that was bonded with another glass wafer having microfluidic channels. The devices having sensors integrated into the flow channels sustained pressures up to 220 bar, typical for the operation of supercritical CO2. No leakage from the devices could be found. Integrated temperature sensors were capable of measuring local decompression cooling effects and integrated calorimetric sensors measured flow velocities over the range 0.5-13.8 mm/s. By this, a better control of high-pressure microfluidic platforms has been achieved.

sted, utgiver, år, opplag, sider
2017. Vol. 27, nr 1, artikkel-id 015018
Emneord [en]
supercritical carbon dioxide, high pressure microfluidics, integrated electrodes, temperature sensing, flow sensing, glass
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot mikrosystemteknik
Identifikatorer
URN: urn:nbn:se:uu:diva-310063DOI: 10.1088/0960-1317/27/1/015018ISI: 000388703300003OAI: oai:DiVA.org:uu-310063DiVA, id: diva2:1054827
Forskningsfinansiär
Swedish Research Council, 2011-5037VINNOVAKnut and Alice Wallenberg Foundation
Merknad

Part financed through Swedish Agency for the Innovation System, Vinnova, through the Centre for Natural Disaster Science (CNDS)

Tilgjengelig fra: 2016-12-09 Laget: 2016-12-09 Sist oppdatert: 2018-06-19bibliografisk kontrollert
Inngår i avhandling
1. Microfluidics at High Pressures: Understanding, Sensing, and Control
Åpne denne publikasjonen i ny fane eller vindu >>Microfluidics at High Pressures: Understanding, Sensing, and Control
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis explores understanding, sensing, and control in high-pressure microfluidics. The high-pressure regime allows fluids to be forced through narrow channels at substantial speed and creates conditions for fluids of high density and low viscosity—features desired in flow-based chemical analyses. With changes to pressure and temperature, fluid properties vary, and for miniaturized flow systems, sensing and control are needed.

For miniaturized chemical analytics to utilize high-pressure fluids, like supercritical CO2, sensors are required for flow characterization. In this thesis, high-pressure tolerant sensors in glass chips have been developed and investigated. By the use of chip-integrated temperature, flow, and relative permittivity sensors, the variable behavior of supercritical CO2 or binary component CO2-alcohol mixtures have been investigated. To be able to change flow rates, a heat-based actuator chip has been developed. By a flow control system, which combines a relative permittivity sensor and heat actuated flow regulators on a modular system, the composition of binary component CO2-alcohol mixtures can be tuned and controlled with feedback.

Flows of multiphase CO2-H2O hold promise for miniaturized extraction systems. In this thesis, parallel multiphase CO2-H2O flow has been studied. To achieve control, methods have been investigated where channels have been modified by the introduction of a guiding ridge and altered by a chemical coating. Flow is a dynamic process, where pressure and temperature can vary with time and place. As the properties of fluids containing CO2 may change with pressure and temperature, properties will also change with time and place. Because of this, instruments with spatial and temporal resolution are needed to better understand dynamic chemical effects at flow. In this thesis, a tool is presented to study the dynamic acidification of aqueous solutions that come in contact with flowing CO2.

By a study performed to understand the strength and pressure tolerance of glass chips, it has been found that the fracture is not only determined by the applied pressure, but also on time and environment.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 60
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1687
Emneord
High-pressure microfluidics, supercritical CO2, compressible flow, relative permittivity, integrated electrodes
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot mikrosystemteknik
Identifikatorer
urn:nbn:se:uu:diva-353964 (URN)978-91-513-0372-7 (ISBN)
Disputas
2018-09-14, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-08-21 Laget: 2018-06-19 Sist oppdatert: 2018-08-27

Open Access i DiVA

fulltext(598 kB)112 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 598 kBChecksum SHA-512
247eb94f106c797f7e8c65e4dfd3d8dd84ee64efb0dfe5223ed6c500826f96073e70d37863b59c77768ec54e60411e090777c91d34a96d295e299213ec968cc6
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Andersson, MartinStocklassa, JesperSnögren, PärHjort, KlasKlintberg, Lena

Søk i DiVA

Av forfatter/redaktør
Andersson, MartinStocklassa, JesperSnögren, PärHjort, KlasKlintberg, Lena
Av organisasjonen
I samme tidsskrift
Journal of Micromechanics and Microengineering

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 112 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1354 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf