uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Ultra long-lived electron-hole separation within water-soluble colloidal ZnO nanocrystals: Prospective Applications For Solar Energy Production
Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland..
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
Vise andre og tillknytning
2016 (engelsk)Inngår i: Nano Energy, ISSN 2211-2855, Vol. 30, s. 187-192Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Zinc oxide was one of the first semiconductors used in dye-sensitized solar cells but its instability in aqueous media precludes its use for large-scale applications. Herein, we report on a novel ZnO nanocrystal material derived by an organometallic approach that is simultaneously stable and soluble in water due to its carboxylate oligoethylene glycol shell strongly anchored to the inorganic core by the head groups. The resulting unique inorganic core-organic shell interface also stabilizes the photo-generated hole, leading to a dramatic slowing down of charge recombination, which otherwise is a major hurdle in using nanostructured ZnO.

sted, utgiver, år, opplag, sider
2016. Vol. 30, s. 187-192
Emneord [en]
Water-soluble colloidal ZnO nanocrystals, Ultra long-lived electron-hole separation, Advanced laser based spectroscopy, Solar energy production prospectus
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-314050DOI: 10.1016/j.nanoen.2016.09.045ISI: 000390636100023OAI: oai:DiVA.org:uu-314050DiVA, id: diva2:1071718
Forskningsfinansiär
Knut and Alice Wallenberg FoundationEU, European Research Council, 687008Swedish Research Council, 2015-03764Tilgjengelig fra: 2017-02-06 Laget: 2017-01-26 Sist oppdatert: 2018-12-17bibliografisk kontrollert
Inngår i avhandling
1. Accumulative Charge Separation in Photocatalysis: From Molecules to Nanoparticles
Åpne denne publikasjonen i ny fane eller vindu >>Accumulative Charge Separation in Photocatalysis: From Molecules to Nanoparticles
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig) [Kunstnerisk arbeiden]
Abstract [en]

Photochemical energy conversion into solar fuel involves steps of light absorption, charge separation and catalysis. Nature has taught us that the effective accumulation of redox equivalents and charge separation are the key steps in sunlight conversion. The focus of this thesis is to unveil photophysical and photochemical processes that lead to accumulative charge separation. The optimization of electron transfer process will be held by minimization of losses via recombination, and extension of the lifetime of the charge separated state by usage of the electron relay.

The goal is to couple light induced electron transfer process with the multi-electron catalytic process of hydrogen evolution. In this regard, light harvesters (molecules, metal nanostructures) that generate at least two electrons per absorbed photon will be studied. Additionally, semiconductors that generate long-lived charge separated states are utilized to accumulate several redox equivalents necessary for hydrogen evolution.

The hybrid systems produced by the combination of the advantageous properties of molecules, semiconductors, and metal nanoparticles are under the scope of investigation. Metal nanoparticles are advantageous because of their high absorption cross-section. The molecular linkers provide control and flexibility in tuning the connection between the light absorber and the electron relay. Semiconductor nanoparticles offer the desired charge separation properties via prolonging the lifetime sufficiently to perform photocatalysis.

The detailed understanding, investigation and development of the hybrid systems is at the heart of the progress of photochemical solar fuel production.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2019. s. 88
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1759
Emneord
Accumulative charge separation, Electron transfer, Plasmon dynamics, Time-resolved spectroscopy, Photocatalysis.
HSV kategori
Forskningsprogram
Kemi med inriktning mot fysikalisk kemi
Identifikatorer
urn:nbn:se:uu:diva-369930 (URN)978-91-513-0543-1 (ISBN)
Disputas
2019-02-22, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-01-23 Laget: 2018-12-17 Sist oppdatert: 2019-02-18

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Pavliuk, Mariia V.D'Amario, LucaFernandes, Daniel L. A.Mamedov, FikretFöhlinger, JensHammarström, LeifSá, Jacinto

Søk i DiVA

Av forfatter/redaktør
Pavliuk, Mariia V.D'Amario, LucaFernandes, Daniel L. A.Mamedov, FikretFöhlinger, JensHammarström, LeifSá, Jacinto
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1409 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf