uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Na2.32Co1.84(SO4)(3) as a new member of the alluaudite family of high-voltage sodium battery cathodes
Indian Inst Sci, Mat Res Ctr, Faraday Mat Lab, CV Raman Ave, Bangalore 560012, Karnataka, India..
Indian Inst Sci, Mat Res Ctr, Faraday Mat Lab, CV Raman Ave, Bangalore 560012, Karnataka, India..
Indian Inst Sci, Mat Res Ctr, Faraday Mat Lab, CV Raman Ave, Bangalore 560012, Karnataka, India..
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Show others and affiliations
2017 (English)In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 46, no 1, p. 55-63Article in journal (Refereed) Published
Abstract [en]

Electrochemical energy storage has recently seen tremendous emphasis being placed on the large-scale (power) grid storage. Sodium-ion batteries are capable of achieving this goal with economic viability. In a recent breakthrough in sodium-ion battery research, the alluaudite framework (Na2Fe2(SO4)(3)) has been reported, with the highest Fe3+/Fe2+ redox potential (ca. 3.8 V, Barpanda, et al., Nat. Commun., 2014, 5, 4358). Exploring this high-voltage sodium insertion system, we report the discovery of Na2+2xCo2-x(SO4)(3) (x = 0.16) as a new member of the alluaudite class of cathode. Stabilized by low-temperature solid-state synthesis (T <= 350 degrees C),this novel Co-based compound assumes a monoclinic structure with C2/c symmetry, which undergoes antiferromagnetic ordering below 10.2 K. Isotypical to the Fe-homologue, it forms a complete family of solid-solution Na2+2x(Fe1-yCoy)(2-x)(SO4)(3) [ y = 0-1]. Ab initio DFT analysis hints at potential high voltage operation at 4.76-5.76 V (vs. Na), depending on the degree of desodiation involving a strong participation of the oxygen sub-lattice. With the development of safe organic electrolytes, Na2+2xCo2-x(SO4)(3) can work as a cathode material (similar to 5 V) for sodium-ion batteries.

Place, publisher, year, edition, pages
2017. Vol. 46, no 1, p. 55-63
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-315835DOI: 10.1039/c6dt03767dISI: 000391570700008OAI: oai:DiVA.org:uu-315835DiVA, id: diva2:1075990
Funder
Carl Tryggers foundation Swedish Research CouncilStandUpAvailable from: 2017-02-21 Created: 2017-02-21 Last updated: 2017-11-29Bibliographically approved
In thesis
1. Energy Storage Materials: Insights From ab Initio Theory: Diffusion, Structure, Thermodynamics and Design.
Open this publication in new window or tab >>Energy Storage Materials: Insights From ab Initio Theory: Diffusion, Structure, Thermodynamics and Design.
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The development of science and technology have provided a lifestyle completely dependent on energy consumption. Devices such as computers and mobile phones are good examples of how our daily life depends on electric energy. In this scenario, energy storage technologies emerge with strategic importance providing efficient ways to transport and commercialize the produced energy. Rechargeable batteries come as the most suitable alternative to fulfill the market demand due to their higher energy- and power- density when compared with other electrochemical energy storage systems. In this context, during the production of this thesis, promising compounds for advanced batteries application were investigated from the theoretical viewpoint. The framework of the density functional theory has been employed together with others theoretical tools to study properties such as ionic diffusion, redox potential, electronic structure and crystal structure prediction.

Different organic materials were theoretically characterized with quite distinct objectives. For instance, a protocol able to predict the redox potential in solution of long oligomers were developed and tested against experimental measurements. Strategies such as anchoring of small active molecules on polymers backbone have also been investigated through a screening process that determined the most promising candidates. Methods such as evolutionary simulation and basin-hopping algorithm were employed to search for global minimum crystal structures of small molecules and inorganic compounds working as a cathode of advanced sodium batteries. The crystal structure evolution of C6Cl4O2 upon Na insertion was unveiled and the main reasons behind the lower specific capacity obtained in the experiment were clarified. Ab initio molecular dynamics and the nudged elastic band method were employed to understand the underlying ionic diffusion mechanisms in the recently proposed Alluaudite and Eldfellite cathode materials. Moreover, it was demonstrated that electronic conduction in Na2O2, a byproduct of the Na-O2 battery, occurs via hole polarons hopping. Important physical and chemical insights were obtained during the production of this thesis. It finally supports the development of low production cost, environmental friendliness and efficient electrode compounds for advanced secondary batteries. 

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. p. 83
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1584
Keywords
Density Functional Theory, Defects Diffusion, Thermodynamics and Batteries.
National Category
Natural Sciences
Identifiers
urn:nbn:se:uu:diva-331399 (URN)978-91-513-0122-8 (ISBN)
Public defence
2017-12-07, Polhemsalen, Ångström Laboratory, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2017-11-15 Created: 2017-10-19 Last updated: 2018-03-07

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Araujo, Rafael B.Chakraborty, SudipAhuja, Rajeev

Search in DiVA

By author/editor
Araujo, Rafael B.Chakraborty, SudipAhuja, Rajeev
By organisation
Materials Theory
In the same journal
Dalton Transactions
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 433 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf