uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form?
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.ORCID-id: 0000-0002-7875-7543
Vise andre og tillknytning
2018 (engelsk)Inngår i: Numerical Algorithms, ISSN 1017-1398, E-ISSN 1572-9265, Vol. 78, s. 867-893Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
2018. Vol. 78, s. 867-893
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-328780DOI: 10.1007/s11075-017-0404-zISI: 000435692900010OAI: oai:DiVA.org:uu-328780DiVA, id: diva2:1137530
Tilgjengelig fra: 2017-08-31 Laget: 2017-08-31 Sist oppdatert: 2019-01-22bibliografisk kontrollert
Inngår i avhandling
1. Matrix-Less Methods for Computing Eigenvalues of Large Structured Matrices
Åpne denne publikasjonen i ny fane eller vindu >>Matrix-Less Methods for Computing Eigenvalues of Large Structured Matrices
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

When modeling natural phenomena with linear partial differential equations, the discretized system of equations is in general represented by a matrix. To solve or analyze these systems, we are often interested in the spectral behavior of these matrices. Whenever the matrices of interest are Toeplitz, or Toeplitz-like, we can use the theory of Generalized Locally Toeplitz (GLT) sequences to study the spectrum (eigenvalues). A central concept in the theory of GLT sequences is the so-called symbol, that is, a function associated with a sequence of matrices of increasing size. When sampling the symbol and when the related matrix sequence is Hermitian (or quasi-Hermitian), we obtain an approximation of the spectrum of a matrix of a fixed size and we can therefore see its general behavior. However, the so-computed approximations of the eigenvalues are often affected by errors having magnitude of the reciprocal of the matrix size.

In this thesis we develop novel methods, which we call "matrix-less" since they neither store the matrices of interest nor depend on matrix-vector products, to estimate these errors. Moreover, we exploit the structures of the considered matrices to efficiently and accurately compute the spectrum.

We begin by considering the errors of the approximate eigenvalues computed by sampling the symbol on a uniform grid, and we conjecture the existence of an asymptotic expansion for these errors. We devise an algorithm to approximate the expansion by using a small number of moderately sized matrices, and we show through numerical experiments the effectiveness of the algorithm. We also show that the same algorithm works for preconditioned matrices, a result which is important in practical applications. Then, we explain how to use the approximated expansion on the whole spectrum for large matrices, whereas in earlier works its applicability was restricted only to certain matrix sizes and to a subset of the spectrum. Next, we demonstrate how to use the so-developed techniques to investigate, solve, and improve the accuracy in the eigenvalue computations for various differential problems discretized by the isogeometric analysis (IgA) method. Lastly, we discuss a class of non-monotone symbols for which we construct the sampling grid yielding exact eigenvalues and eigenvectors.

To summarize, we show, both theoretically and numerically, the applicability of the presented matrix-less methods for a wide variety of problems.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 81
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1652
Emneord
Toeplitz matrices, eigenvalues, eigenvalue asymptotics, polynomial interpolation, extrapolation, generating function and spectral symbol
HSV kategori
Forskningsprogram
Beräkningsvetenskap med inriktning mot numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-346735 (URN)978-91-513-0288-1 (ISBN)
Disputas
2018-05-18, 2446 ITC, Lägerhyddsvägen 2, hus 2, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-04-20 Laget: 2018-03-25 Sist oppdatert: 2018-10-08

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Ekström, Sven-ErikSerra-Capizzano, Stefano

Søk i DiVA

Av forfatter/redaktør
Ekström, Sven-ErikSerra-Capizzano, Stefano
Av organisasjonen
I samme tidsskrift
Numerical Algorithms

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 627 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf