uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hemocompatibility of Ca2+-Crosslinked Nanocellulose Hydrogels: Toward Efficient Management of Hemostasis
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanotechnology and Functional Materials)
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. (Forskargrupp Bo Nilsson)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanotechnology and Functional Materials)
2017 (engelsk)Inngår i: Macromolecular Bioscience, ISSN 1616-5187, E-ISSN 1616-5195, Vol. 17, nr 11, artikkel-id 1700236Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The present work investigates Ca2+-crosslinked nanofibrillated cellulose hydrogels as potential hemostatic wound dressings by studying core interactions between the materials and a central component of wounds and wound healing—the blood. Hydrogels of wood-derived anionic nanofibrillated cellulose (NFC) and NFC hydrogels that incorporate kaolin or collagen are studied in an in vitro whole blood model and with platelet-free plasma assays. The evaluation of thrombin and factor XIIa formation, platelet reduction, and the release of activated complement system proteins, shows that the NFC hydrogel efficiently triggered blood coagulation, with a rapid onset of clot formation, while displaying basal complement system activation. By using the NFC hydrogel as a carrier of kaolin, the onset of hemostasis is further boosted, while the NFC hydrogel containing collagen exhibits blood activating properties comparable to the anionic NFC hydrogel. The herein studied NFC hydrogels demonstrate great potential for being part of advanced wound healing dressings that can be tuned to target certain wounds (e.g., strongly hemorrhaging ones) or specific phases of the wound healing process for optimal wound management.

sted, utgiver, år, opplag, sider
2017. Vol. 17, nr 11, artikkel-id 1700236
Emneord [en]
biocompatibility, blood coagulation, complement system, nanofibrillated cellulose, wound dressing
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
URN: urn:nbn:se:uu:diva-332127DOI: 10.1002/mabi.201700236ISI: 000415130800015PubMedID: 28941135OAI: oai:DiVA.org:uu-332127DiVA, id: diva2:1152315
Forskningsfinansiär
Swedish Research Council FormasTilgjengelig fra: 2017-10-24 Laget: 2017-10-24 Sist oppdatert: 2018-10-12bibliografisk kontrollert
Inngår i avhandling
1. Ion-Crosslinked Nanocellulose Hydrogels for Advanced Wound Care Applications
Åpne denne publikasjonen i ny fane eller vindu >>Ion-Crosslinked Nanocellulose Hydrogels for Advanced Wound Care Applications
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

A current trend in the field of wound care is the development of wound healing materials that are designed to address specific types of wounds or underlying pathologies to achieve improved healing. At the same time, there is a societal drive to replace synthetic materials with renewable alternatives. The work presented in this thesis was therefore carried out to investigate the use of wood nanocellulose, produced from the world’s most abundant biopolymer, cellulose, in advanced wound care applications.

Wood-based nanofibrillated cellulose (NFC) was chemically functionalized and crosslinked using calcium to obtain a self-standing hydrogel. The NFC hydrogel was evaluated in terms of its physicochemical properties, biocompatibility, blood interactions, bacterial interactions, in vivo wound healing ability and, finally, as a protein carrier. Parallel with the assessment of the NFC hydrogel, modified versions of the material were tested to investigate the tunability of the above-mentioned characteristics.

The ability of the hydrogel to maintain a moist wound bed was demonstrated. Evaluation of the biocompatibility showed that the material was cytocompatible and did not trigger inflammatory mechanisms. Furthermore, the NFC hydrogel supported cell proliferation, and was shown to possess hemostatic properties. It was also discovered that the material had a slight bacteriostatic effect and the ability to act as a barrier against bacteria. When tested in vivo, the hydrogel was found to significantly improve wound healing.

Modifications through the incorporation of additives to the hydrogel matrix, as well as exchange of the crosslinking ion, were shown to influence the biological response to the material. Moreover, the results presented here demonstrate the possibility of using the NFC hydrogel as a protein carrier; the easily adjustable charge property being identified as a central parameter for manipulation to regulate the release profile.

In conclusion, this work has demonstrated the extensive wound healing ability of the calcium-crosslinked NFC hydrogel, and represents an important milestone in the research on NFC towards advanced wound care applications. It is expected that the easily modifiable nature of the material can be exploited to further develop the NFC hydrogel to suit the treatment needs for a broad range of wound types.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 81
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1731
Emneord
nanofibrillated cellulose, wood nanocellulose, ion crosslinking, hydrogel, wound healing, biocompatibility, blood interactions, bacterial interactions, protein carrier, nanotherapeutic
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
urn:nbn:se:uu:diva-363087 (URN)978-91-513-0474-8 (ISBN)
Disputas
2018-11-30, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:30 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-11-09 Laget: 2018-10-12 Sist oppdatert: 2018-11-19

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Basu, AlexHong, JaanFerraz, Natalia

Søk i DiVA

Av forfatter/redaktør
Basu, AlexHong, JaanFerraz, Natalia
Av organisasjonen
I samme tidsskrift
Macromolecular Bioscience

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 471 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf