uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced wound care applications
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanotechnology and Functional Materials)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanotechnology and Functional Materials)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanotechnology and Functional Materials)ORCID-id: 0000-0002-5496-9664
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanotechnology and Functional Materials)ORCID-id: 0000-0003-4543-1130
Vise andre og tillknytning
2018 (engelsk)Inngår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 181, s. 345-350Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Development of advanced dressings with antimicrobial properties for the treatment of infected wounds is an important approach in the fight against evolution of antibiotic resistant bacterial strains. Herein, the effects of ion-crosslinked nanocellulose hydrogels on bacteria commonly found in infected wounds were investigated in vitro. By using divalent calcium or copper ions as crosslinking agents, different antibacterial properties against the bacterial strains Staphylococcus epidermidis and Pseudomonas aeruginosa were obtained. Calcium crosslinked hydrogels were found to retard S. epidermidis growth (up to 266% increase in lag time, 36% increase in doubling time) and inhibited P. aeruginosa biofilm formation, while copper crosslinked hydrogels prevented S. epidermidis growth and were bacteriostatic towards P. aeruginosa (49% increase in lag time, 78% increase in doubling time). The wound dressing candidates furthermore displayed barrier properties towards both S. epidermidis and P. aeruginosa, hence making them interesting for further development of advanced wound dressings with tunable antibacterial properties.

sted, utgiver, år, opplag, sider
2018. Vol. 181, s. 345-350
Emneord [en]
Nanofibrillated cellulose, Biofilm, Wound dressing, Infected wound
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
URN: urn:nbn:se:uu:diva-333382DOI: 10.1016/j.carbpol.2017.10.085ISI: 000418661000041PubMedID: 29253982OAI: oai:DiVA.org:uu-333382DiVA, id: diva2:1156395
Forskningsfinansiär
Swedish Research Council FormasTilgjengelig fra: 2017-11-13 Laget: 2017-11-13 Sist oppdatert: 2018-10-12bibliografisk kontrollert
Inngår i avhandling
1. Ion-Crosslinked Nanocellulose Hydrogels for Advanced Wound Care Applications
Åpne denne publikasjonen i ny fane eller vindu >>Ion-Crosslinked Nanocellulose Hydrogels for Advanced Wound Care Applications
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

A current trend in the field of wound care is the development of wound healing materials that are designed to address specific types of wounds or underlying pathologies to achieve improved healing. At the same time, there is a societal drive to replace synthetic materials with renewable alternatives. The work presented in this thesis was therefore carried out to investigate the use of wood nanocellulose, produced from the world’s most abundant biopolymer, cellulose, in advanced wound care applications.

Wood-based nanofibrillated cellulose (NFC) was chemically functionalized and crosslinked using calcium to obtain a self-standing hydrogel. The NFC hydrogel was evaluated in terms of its physicochemical properties, biocompatibility, blood interactions, bacterial interactions, in vivo wound healing ability and, finally, as a protein carrier. Parallel with the assessment of the NFC hydrogel, modified versions of the material were tested to investigate the tunability of the above-mentioned characteristics.

The ability of the hydrogel to maintain a moist wound bed was demonstrated. Evaluation of the biocompatibility showed that the material was cytocompatible and did not trigger inflammatory mechanisms. Furthermore, the NFC hydrogel supported cell proliferation, and was shown to possess hemostatic properties. It was also discovered that the material had a slight bacteriostatic effect and the ability to act as a barrier against bacteria. When tested in vivo, the hydrogel was found to significantly improve wound healing.

Modifications through the incorporation of additives to the hydrogel matrix, as well as exchange of the crosslinking ion, were shown to influence the biological response to the material. Moreover, the results presented here demonstrate the possibility of using the NFC hydrogel as a protein carrier; the easily adjustable charge property being identified as a central parameter for manipulation to regulate the release profile.

In conclusion, this work has demonstrated the extensive wound healing ability of the calcium-crosslinked NFC hydrogel, and represents an important milestone in the research on NFC towards advanced wound care applications. It is expected that the easily modifiable nature of the material can be exploited to further develop the NFC hydrogel to suit the treatment needs for a broad range of wound types.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 81
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1731
Emneord
nanofibrillated cellulose, wood nanocellulose, ion crosslinking, hydrogel, wound healing, biocompatibility, blood interactions, bacterial interactions, protein carrier, nanotherapeutic
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
urn:nbn:se:uu:diva-363087 (URN)978-91-513-0474-8 (ISBN)
Disputas
2018-11-30, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:30 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-11-09 Laget: 2018-10-12 Sist oppdatert: 2018-11-19

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Basu, AlexStrömme, MariaWelch, KenFerraz, Natalia

Søk i DiVA

Av forfatter/redaktør
Basu, AlexHeitz, KarenStrömme, MariaWelch, KenFerraz, Natalia
Av organisasjonen
I samme tidsskrift
Carbohydrate Polymers

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 438 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf