uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Prediction of mortality risk in victims of violent crimes
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Anestesiologi och intensivvård. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Uppsala kliniska forskningscentrum (UCR).
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Uppsala kliniska forskningscentrum (UCR).
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Ortopedi.ORCID-id: 0000-0002-4421-6466
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Ortopedi.ORCID-id: 0000-0003-2815-1217
Vise andre og tillknytning
2017 (engelsk)Inngår i: Forensic Science International, ISSN 0379-0738, E-ISSN 1872-6283, Vol. 281, s. 92-97Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

BACKGROUND: To predict mortality risk in victims of violent crimes based on individual injury diagnoses and other information available in health care registries.

METHODS: Data from the Swedish hospital discharge registry and the cause of death registry were combined to identify 15,000 hospitalisations or prehospital deaths related to violent crimes. The ability of patient characteristics, injury type and severity, and cause of injury to predict death was modelled using conventional, Lasso, or Bayesian logistic regression in a development dataset and evaluated in a validation dataset.

RESULTS: Of 14,470 injury events severe enough to cause death or hospitalization 3.7% (556) died before hospital admission and 0.5% (71) during the hospital stay. The majority (76%) of hospital survivors had minor injury severity and most (67%) were discharged from hospital within 1day. A multivariable model with age, sex, the ICD-10 based injury severity score (ICISS), cause of injury, and major injury region provided predictions with very good discrimination (C-index=0.99) and calibration. Adding information on major injury interactions further improved model performance. Modeling individual injury diagnoses did not improve predictions over the combined ICISS score.

CONCLUSIONS: Mortality risk after violent crimes can be accurately estimated using administrative data. The use of Bayesian regression models provides meaningful risk assessment with more straightforward interpretation of uncertainty of the prediction, potentially also on the individual level. This can aid estimation of incidence trends over time and comparisons of outcome of violent crimes for injury surveillance and in forensic medicine.

sted, utgiver, år, opplag, sider
2017. Vol. 281, s. 92-97
Emneord [en]
Bayesian inference, Forensic medicine, Mortality, Violent crime
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-334432DOI: 10.1016/j.forsciint.2017.10.015ISI: 000417055800017PubMedID: 29125989OAI: oai:DiVA.org:uu-334432DiVA, id: diva2:1159607
Tilgjengelig fra: 2017-11-23 Laget: 2017-11-23 Sist oppdatert: 2018-11-30

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Gedeborg, RolfSvennblad, BodilByberg, LiisaMichaëlsson, KarlThiblin, Ingemar

Søk i DiVA

Av forfatter/redaktør
Gedeborg, RolfSvennblad, BodilByberg, LiisaMichaëlsson, KarlThiblin, Ingemar
Av organisasjonen
I samme tidsskrift
Forensic Science International

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 139 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf