uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A new high-power low-loss air-dielectric stripline Gysel divider/combiner for particle accelerator applications at 352 MHz
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, FREIA. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
Vietnam National University (VNU), Hanoi, Vietnam.
Vietnam National University (VNU), Hanoi, Vietnam.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, FREIA. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
Vise andre og tillknytning
2018 (engelsk)Inngår i: IET Control Theory & Applications, ISSN 1751-8644, E-ISSN 1751-8652, nr 5, s. 264-267Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This study presents a new two-way Gysel combiner based on an air-dielectric stripline which allows to handle very high radio-frequency power levels with low-loss suitable for power combination in accelerator applications. The insertion loss of the combiner is 0.1 dB (2%). A thick stripline implementation allows improving the power capability in both continuous wave (CW) and pulsed operation. In addition, a mechanical tuner allows compensating for assembly and fabrication discrepancies. A methodology of designing the Gysel combiner as well as high-power measurements up to 22 kW in pulsed mode are presented. Simulations and measurements are in very good agreement.

sted, utgiver, år, opplag, sider
2018. nr 5, s. 264-267
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-334913DOI: 10.1049/joe.2017.0793ISI: 000436345200003OAI: oai:DiVA.org:uu-334913DiVA, id: diva2:1161140
Prosjekter
ESSTilgjengelig fra: 2017-11-29 Laget: 2017-11-29 Sist oppdatert: 2019-11-21bibliografisk kontrollert
Inngår i avhandling
1. High Power Radio Frequency Solid-State Amplifiers and Combiners for Particle Accelerators: From module to system design approach
Åpne denne publikasjonen i ny fane eller vindu >>High Power Radio Frequency Solid-State Amplifiers and Combiners for Particle Accelerators: From module to system design approach
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The rise of Big Science projects brings issues related to the energy consumption and the associated environmental impacts of such large-scale facilities. Therefore, environmentally-sustainable developments are undertaken towards the adoption of energy savings and improved energy-efficient approaches. The advent of the superconducting (SC) radio frequency (RF) accelerating cavity is bringing answers to these issues. Such superconducting RF (SRF) cavity is made of niobium that allows much higher accelerating gradients with a minimization of the energy consumption. The SC RF technology is increasingly used in many modern particle accelerators, including: the European Spallation Source (ESS), the X-ray Free Electron Laser (XFEL), the Linac Coherent Light Source (LCLS)-II and the proposed International Linear Collider (ILC).

The innovation of solid state PA technology pushes limits regarding packaging, efficiency, frequency capability, thermal stability, making them more attractive than other well-established alternative technologies, such as vacuum tube technology in mid-range power applications. Through the investigations of designs and techniques, this research goal of the thesis allows to improve solid-state based power generation systems from module to the overall system design. This thesis introduces the single-ended PA design approach in planar technology and at kilowatt level. The design solution unlocks different possibilities including: improved integration, layout flexibility for tuning, and suitably for mass productions that are demanded in future high peak power generation systems. The novel amplifier design is followed by time domain characterization to fully evaluate the pulse profiles of such amplifiers when delivering kilowatt output power level for operation in conjunction with SRF accelerating cavities. Amplitude and phase stability of those amplifiers are also investigated in time-domain. The extracted data can then be used as measurement-based model for predicting factors which could degrade the overall stability of the associated PA.

Future RF power generation systems built around solid state PAs need also efficient combining strategies. Two engineering design solutions are investigated in this thesis aiming for mid- and high- range power combination. One solution is based on a combination of the Gysel structure using suspended strip-line technology for improved power handling capability. Another solution is implementing a radial combiner, which uses re-entrant cavity resonator at 352 MHz and door-nob geometry for coupling at inputs and at the output. These solutions facilitate the scaling up 400 kW for powering ESS spoke cavities while maintaining a high degree of efficiency in RF power generation. This thesis gives insights of system integration and tuning procedures with a demonstration of combining 8 modules, delivering a total of 10 kW output power. Along with the proposed combining solutions at higher power levels, the nominal power block of 10 kW is used as an elementary block to propose scaling up in power till the 400 kW nominal power required by ESS.

Finally, this thesis focuses on implementing an optimal charging scheme for SRF cavities, which helps reducing the wasted energy and improves the overall efficiency operation at future accelerating facilities. Therefore, these results contribute further to the larger adoption of solid state technologies in the future power generation systems for particle accelerators.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2019. s. 98
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1881
Emneord
solid state technology, power amplifier, superconducting cavities, optimal charging, high efficiency, particle accelerators
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot mikrovågsteknik
Identifikatorer
urn:nbn:se:uu:diva-397500 (URN)978-91-513-0818-0 (ISBN)
Disputas
2020-01-15, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-12-20 Laget: 2019-11-21 Sist oppdatert: 2020-01-13

Open Access i DiVA

fulltext(683 kB)383 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 683 kBChecksum SHA-512
fb13ac37f4dcec9d1b4d4d5c5bd3824eb662d717a6e273fc849f1cd8cd1b06f47a4e1a8ecb9a3a89a5605caa3b6dede58b534ef2ab1b7e054072fdd396ae5187
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstFörlagets fulltext

Personposter BETA

Hoang Duc, LongJobs, MagnusRuber, RogerDancila, Dragos

Søk i DiVA

Av forfatter/redaktør
Hoang Duc, LongJobs, MagnusRuber, RogerDancila, Dragos
Av organisasjonen
I samme tidsskrift
IET Control Theory & Applications

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 383 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 449 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf