uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The Importance of Pendant Groups on Triphenylamine-Based Hole Transport Materials for Obtaining Perovskite Solar Cells with over 20% Efficiency
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
Vise andre og tillknytning
2018 (engelsk)Inngår i: Advanced Energy Materials, ISSN 1614-6832, Vol. 18, nr 2, artikkel-id 1701209Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Tremendous progress has recently been achieved in the field of perovskite solar cells (PSCs) as evidenced by impressive power conversion efficiencies (PCEs); but the high PCEs of >20% in PSCs has so far been mostly achieved by using the hole transport material (HTM) spiro-OMeTAD; however, the relatively low conductivity and high cost of spiro-OMeTAD significantly limit its potential use in large-scale applications. In this work, two new organic molecules with spiro[fluorene-9,9-xanthene] (SFX)-based pendant groups, X26 and X36, have been developed as HTMs. Both X26 and X36 present facile syntheses with high yields. It is found that the introduced SFX pendant groups in triphenylamine-based molecules show significant influence on the conductivity, energy levels, and thin-film surface morphology. The use of X26 as HTM in PSCs yields a remarkable PCE of 20.2%. In addition, the X26-based devices show impressive stability maintaining a high PCE of 18.8% after 5 months of aging in controlled (20%) humidity in the dark. We believe that X26 with high device PCEs of >20% and simple synthesis show a great promise for future application in PSCs, and that it represents a useful design platform for designing new charge transport materials for optoelectronic applications.

sted, utgiver, år, opplag, sider
2018. Vol. 18, nr 2, artikkel-id 1701209
Emneord [en]
high efficiency, hole transport materials, perovskites, photovoltaic devices, solar cells
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
URN: urn:nbn:se:uu:diva-336199DOI: 10.1002/aenm.201701209ISI: 000419864800001OAI: oai:DiVA.org:uu-336199DiVA, id: diva2:1165247
Forskningsfinansiär
Swedish Energy AgencyÅForsk (Ångpanneföreningen's Foundation for Research and Development)Swedish Research CouncilSwedish Research Council FormasTilgjengelig fra: 2017-12-12 Laget: 2017-12-12 Sist oppdatert: 2018-02-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Yang, LiRuan, ChangqingBoschloo, GerritHagfeldt, AndersJohansson, Erik

Søk i DiVA

Av forfatter/redaktør
Yang, LiRuan, ChangqingBoschloo, GerritHagfeldt, AndersJohansson, Erik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 289 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf