uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Al2O3 Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi. Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia.
Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia.
Vise andre og tillknytning
2017 (engelsk)Inngår i: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 10, nr 19, s. 3810-3817Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Perovskite solar cells, as an emergent technology for solar energy conversion, have attracted much attention in the solar cell community by demonstrating impressive enhancement in power conversion efficiencies. However, the high temperature and manually processed TiO2 underlayer prepared by spray pyrolysis significantly limit the large-scale application and device reproducibility of perovskite solar cells. In this study, lowtemperature atomic layer deposition (ALD) is used to prepare a compact Al2 O3 underlayer for perovskite solar cells. The thickness of the Al2 O3 layer can be controlled well by adjusting the deposition cycles during the ALD process. An optimal Al2 O3 layer effectively blocks electron recombination at the perovskite/fluorine-doped tin oxide interface and sufficiently transports electrons through tunneling. Perovskite solar cells fabricated with an Al2 O3 layer demonstrated a highest efficiency of 16.2 % for the sample with 50 ALD cycles (ca. 5 nm), which is a significant improvement over underlayer-free PSCs, which have a maximum efficiency of 11.0 %. Detailed characterization confirms that the thickness of the Al2 O3 underlayer significantly influences the charge transfer resistance and electron recombination processes in the devices. Furthermore, this work shows the feasibility of using a high band-gap semiconductor such as Al2 O3 as the underlayer in perovskite solar cells and opens up pathways to use ALD Al2 O3 underlayers for flexible solar cells.

sted, utgiver, år, opplag, sider
2017. Vol. 10, nr 19, s. 3810-3817
Emneord [en]
atomic layer deposition, electron transport, perovskites, semiconductors, solar cells
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
URN: urn:nbn:se:uu:diva-336200DOI: 10.1002/cssc.201701160ISI: 000428425000017PubMedID: 28857493OAI: oai:DiVA.org:uu-336200DiVA, id: diva2:1165249
Forskningsfinansiär
Swedish Energy AgencyÅForsk (Ångpanneföreningen's Foundation for Research and Development)Swedish Research CouncilSwedish Research Council FormasKnut and Alice Wallenberg FoundationTilgjengelig fra: 2017-12-12 Laget: 2017-12-12 Sist oppdatert: 2018-07-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Hultqvist, AdamRuan, ChangqingYang, LiEdoff, MarikaJohansson, Erik

Søk i DiVA

Av forfatter/redaktør
Hultqvist, AdamRuan, ChangqingYang, LiEdoff, MarikaJohansson, Erik
Av organisasjonen
I samme tidsskrift
ChemSusChem

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 69 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf