uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Privacy-preserving scheme in social participatory sensing based on Secure Multi-party Cooperation
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datorteknik.
Vise andre og tillknytning
2018 (engelsk)Inngår i: Computer Communications, ISSN 0140-3664, E-ISSN 1873-703X, Vol. 119, s. 167-178Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Social participant sensing has been widely used to collect location related sensory data for various applications. In order to improve the Quality of Information (QoI) of the collected data with constrained budget, the application server needs to coordinate participants with different data collection capabilities and various incentive requirements. However, existing participant coordination methods either require participants to reveal their trajectories to the server which causes privacy leakage, or tradeoff the location accuracy of participants for privacy, thereby leading to lower QoI. In this paper, we propose a privacy-preserving scheme, which allows application server to provide quasi-optimal QoI for social sensing tasks without knowing participants’ trajectories and identity. More specifically, we first suggest a Secure Multi-party Cooperation (SMC) based approach to evaluate participant’s contribution in terms of QoI without disclosing each individual’s trajectory. Second, a fuzzy decision based approach which aims to finely balance data utility gain, incentive budget and inferable privacy protection ability is adopted to coordinate participant in an incremental way. Third, sensory data and incentive are encrypted and then transferred along with participant-chain in perturbed way to protect user privacy throughout the data uploading and incentive distribution procedure. Simulation results show that our proposed method can efficiently select appropriate participants to achieve better QoI than other methods, and can protect each participant’s privacy effectively.

sted, utgiver, år, opplag, sider
2018. Vol. 119, s. 167-178
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-336347DOI: 10.1016/j.comcom.2017.10.007ISI: 000429513100013OAI: oai:DiVA.org:uu-336347DiVA, id: diva2:1165656
Tilgjengelig fra: 2017-10-16 Laget: 2017-12-13 Sist oppdatert: 2018-08-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Ngai, Edith

Søk i DiVA

Av forfatter/redaktør
Ngai, Edith
Av organisasjonen
I samme tidsskrift
Computer Communications

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 97 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf