uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Adjoint-based aerodynamic shape optimization
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för teknisk databehandling. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys. (Waves and Fluids)
2003 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

An adjoint system of the Euler equations of gas dynamics is derived in order to solve aerodynamic shape optimization problems with gradient-based methods. The derivation is based on the fully discrete flow model and involves differentiation and transposition of the system of equations obtained by an unstructured and node-centered finite-volume discretization. Solving the adjoint equations allows an efficient calculation of gradients, also when the subject of optimization is described by hundreds or thousands of design parameters.

Such a fine geometry description may cause wavy or otherwise irregular designs during the optimization process. Using the one-to-one mapping defined by a Poisson problem is a known technique that produces smooth design updates while keeping a fine resolution of the geometry. This technique is extended here to combine the smoothing effect with constraints on the geometry, by defining the design updates as solutions of a quadratic programming problem associated with the Poisson problem.

These methods are applied to airfoil shape optimization for reduction of the wave drag, that is, the drag caused by gas dynamic effects that occur close to the speed of sound. A second application concerns airfoil design optimization to delay the laminar-to-turbulent transition point in the boundary layer in order to reduce the drag. The latter application has been performed by the author with collaborators, also using gradient-based optimization. Here, the growth of convectively unstable disturbances are modeled by successively solving the Euler equations, the boundary layer equations, and the parabolized stability equations.

Ort, förlag, år, upplaga, sidor
Uppsala University, 2003.
Serie
IT licentiate theses / Uppsala University, Department of Information Technology, ISSN 1404-5117 ; 2003-012
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Numerisk analys
Identifikatorer
URN: urn:nbn:se:uu:diva-86142OAI: oai:DiVA.org:uu-86142DiVA, id: diva2:116951
Handledare
Tillgänglig från: 2003-10-16 Skapad: 2007-01-24 Senast uppdaterad: 2017-08-31Bibliografiskt granskad

Open Access i DiVA

fulltext(2396 kB)539 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2396 kBChecksumma SHA-512
be8b692e3244073a01827b18a949b3e929a131ecba461ace9d3ca2cf3e03fa33df9985769dbb6e5018ca10f9bb087032350a13a26041e57d4024f89c734fbc99
Typ fulltextMimetyp application/pdf

Personposter BETA

Amoignon, Olivier

Sök vidare i DiVA

Av författaren/redaktören
Amoignon, Olivier
Av organisationen
Avdelningen för teknisk databehandlingNumerisk analys
Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 539 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 986 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf