uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Density Functional Theory Modeling the Interfacial Chemistry of the LiNO3 Additive for Lithium-Sulfur Batteries by Means of Simulated Photoelectron Spectroscopy
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.ORCID-id: 0000-0002-0366-7228
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.ORCID-id: 0000-0002-8019-2801
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
2017 (Engelska)Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 121, nr 42, s. 23324-23332Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Lithium-sulfur (Li-S) batteries are considered candidates for next-generation energy storage systems due to their high theoretical specific energy. There exist, however, some shortcomings of these batteries, not least the solubility of intermediate polysulfides into the electrolyte generating a so-called "redox shuttle", which gives rise to self-discharge. LiNO3 is therefore frequently used as an electrolyte additive to help suppress this mechanism, but the exact nature of the LiNO3 functionality is still unclear. Here, density functional theory calculations are used to investigate the electronic structure of LiNO3 and a number of likely species (N-2, N2O, LiNO2, Li3N, and Li2N2O2) resulting from the reduction of this additive on the surface of Li metal anode. The N is X-ray photoelectron spectroscopy core level binding energies of these molecules on the surface are calculated in order to compare the results with experimentally reported values. The core level shifts (CLS) of the binding energies are studied to identify possible factors responsible for the position of the peaks. Moreover, solid phases of (cubic) c-Li3N and (hexagonal) alpha-Li3N on the surface of Li metal are considered. The N is binding energies for the bulk phases of Li3N and at the Li3N/Li interfaces display higher values as compared to the Li3N molecule, indicating a clear correlation between the coordination number and the CLS of the solid phases of Li3N.

Ort, förlag, år, upplaga, sidor
2017. Vol. 121, nr 42, s. 23324-23332
Nationell ämneskategori
Materialkemi
Identifikatorer
URN: urn:nbn:se:uu:diva-337669DOI: 10.1021/acs.jpcc.7b07847ISI: 000414114800009OAI: oai:DiVA.org:uu-337669DiVA, id: diva2:1170521
Forskningsfinansiär
Energimyndigheten, 39036-1Carl Tryggers stiftelse för vetenskaplig forskning Vetenskapsrådet, 2014-5984; 2015-05754Tillgänglig från: 2018-01-03 Skapad: 2018-01-03 Senast uppdaterad: 2019-08-05Bibliografiskt granskad
Ingår i avhandling
1. Modelling the Molecular World of Electrolytes and Interfaces: Delving into Li-Metal Batteries
Öppna denna publikation i ny flik eller fönster >>Modelling the Molecular World of Electrolytes and Interfaces: Delving into Li-Metal Batteries
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Lithium metal batteries (LMBs) are potential candidates for powering portable electronic devices and for electromobility. However, utilizing the reactive Li metal electrode means tackling serious challenges in terms of safety risks. A better understanding of electrolytes and solid electrolyte interphase (SEI) formation are highly important in order to improve these issues.

In this thesis, density functional theory (DFT) and molecular dynamics (MD) are used to explore novel electrolyte systems and the interfacial chemistry of electrolyte/Li metal surfaces. In the first part, the electronic structure and possible decompositions pathways of organic carbonates at the Li metal surface are investigated, which provide information about initial SEI formation. Computed X-ray photoelectron spectroscopy (XPS) for these interfacial compounds is used as a tool to find likely electrolyte decomposition pathways and are supported by direct comparison with the experimental results. The electronic structure and computed XPS spectra of electrolyte solvents and the LiNO3 additive on Li metal by DFT provide atomistic insights into the interphase layer.

Solid polymer electrolytes (SPEs) are promising electrolytes to be used with the Li metal electrode. In the second part of the thesis, MD simulations of poly(ethylene oxide) (PEO) doped with LiTFSI salt/Li metal interface demonstrate the impact of the surface on the structure and dynamics of the electrolyte. A new interfacial potential model for MD simulations is also developed for the interactions at the SPE/metal interface, which can better capture this chemical interplay. Moreover, the approach to improve the ionic conductivity of SPEs by adding side-chains to the backbone of polymers is scrutinized through MD simulations of the poly(trimethylene carbonate) (PTMC) system. While providing polymer flexibility, a hindering effects of the side-chains on Li+ ion diffusions through reduced coordination site connectivity is observed.

In the final part, different polymer hosts interacting with Li metal are explored, and rapid decomposition of polycarbonates and polyester on the surface is seen. The complexes of these polymers with LiTFSI and LiFSI showed significant changes in the computed electrochemical stability window and salt degradations. Lastly, Li2O was obtained by DFT calculations as a thermodynamically stable layer on the surface of the Li metal oxidized by PEO.

The modelling studies performed in this thesis highlight the applicability of these techniques in order to probe the SEI and electrolyte properties in LMBs at the atomistic level.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2019. s. 81
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1830
Nyckelord
Li-metal battery, solid polymer electrolyte, density functional theory, molecular dynamics simulation, solid electrolyte interphase
Nationell ämneskategori
Naturvetenskap
Identifikatorer
urn:nbn:se:uu:diva-390066 (URN)978-91-513-0703-9 (ISBN)
Disputation
2019-09-20, Polhemsalen, 10134, Ångstrom Laboratory, Lägerhyddsvägen 1, Uppsala, 09:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-08-30 Skapad: 2019-08-05 Senast uppdaterad: 2019-09-17

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Ebadi, MahsaLacey, MatthewBrandell, DanielAraujo, Carlos Moyses

Sök vidare i DiVA

Av författaren/redaktören
Ebadi, MahsaLacey, MatthewBrandell, DanielAraujo, Carlos Moyses
Av organisationen
StrukturkemiMaterialteori
I samma tidskrift
The Journal of Physical Chemistry C
Materialkemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 298 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf