uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Toward the Realization of 2D Borophene Based Gas Sensor
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.ORCID-id: 0000-0002-8242-8005
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.ORCID-id: 0000-0001-5389-2469
Vise andre og tillknytning
2017 (engelsk)Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 121, nr 48, s. 26869-26876Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

To the league of rapidly expanding 2D materials, borophene is a recent addition. Herein, a combination of ab initio density functional theory (DFT) and nonequilibrium Green's function (NEGF) based methods is used to estimate the prospects of this promising elemental 2D material for gas sensing applications. We note that the binding of target gas molecules such as CO, NO, NO2, NH3, and CO2 is quite strong on the borophene surface. Interestingly, our computed binding energies are far stronger than several other reported 2D materials like graphene, MoS2, and phosphorene. Further rationalization of stronger binding is made with the help of charge transfer analysis. The sensitivity of the borophene for these gases is also interpreted in terms of computing the vibrational spectra of the adsorbed gases on top of borophene, which show dramatic shift from their gas phase reference values. The metallic nature of borophene enables us to devise a setup considering the same substrate as electrodes. From the computation of the transmission function of system (gas + borophene), appreciable changes in the transmission functions are noted compared to pristine borophene surface. The measurements of current-voltage (I-V) characteristics unambiguously demonstrate the presence and absence of gas molecules (acting as ON and OFF states), strengthening the plausibility of a borophene based gas sensing device. As we extol the extraordinary sensitivity of borophene, we assert that this elemental 2D material is likely to attract subsequent interest.

sted, utgiver, år, opplag, sider
AMER CHEMICAL SOC , 2017. Vol. 121, nr 48, s. 26869-26876
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-340255DOI: 10.1021/acs.jpcc.7b09552ISI: 000417671500032OAI: oai:DiVA.org:uu-340255DiVA, id: diva2:1178773
Forskningsfinansiär
Swedish National Infrastructure for Computing (SNIC)Swedish Research CouncilCarl Tryggers foundation StandUpTilgjengelig fra: 2018-01-30 Laget: 2018-01-30 Sist oppdatert: 2019-04-13bibliografisk kontrollert
Inngår i avhandling
1. Computational Studies of 2D Materials: Application to Energy Storage and Electron Transport in Nanoscale Devices
Åpne denne publikasjonen i ny fane eller vindu >>Computational Studies of 2D Materials: Application to Energy Storage and Electron Transport in Nanoscale Devices
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The field of two-dimensional (2D) layered materials provides a new platform for studying diverse physical phenomena that are scientifically interesting and relevant for technological applications. Novel applications in electronics and energy storage harness the unique electronic, optical, and mechanical properties of 2D materials for design of crucial components. Atomically thin, with large surface to volume ratio, these materials are attractive for broad applications for hydrogen storage, sensing, batteries and photo-catalysis. Theoretical predictions from atomically resolved computational simulations of 2D materials play a pivotal role in designing and advancing these developments.

The central topic of this thesis is 2D materials studied using density functional theory and non-equilibrium Green’s function. The electronic structure and transport properties are discussed for several synthesized and predicted 2D materials, with diverse potential applications in nanoscale electronic devices, gas sensing, and electrodes for rechargeable batteries. Lateral and vertical heterostructures have been studied for applications in nanoscale devices such as graphene/hBN heterostructure nanogap for a potential DNA sequencing device, while in case of twisted bilayer black phosphorus nanojunction, where electronic and transport properties have been explored for diode-like characteristics device. We also have addressed the structural, electronic and transport properties of the recently synthesized polymorphs of 2D borons known as borophenes. We have explored the conventional methods of tuning the material’s properties such as strain in borophene and substitutional doping in black phosphorus with the further investigation of their gas sensing application.

A significant portion of this thesis is also dedicated to the energy storage applications of different 2D materials. Energy storage technologies arise with vital importance in providing effective ways to transport and commercialize the produced energy, aiming at rechargeable batteries with high energy and power density. In this context, first-principles simulations have been applied together with other theoretical tools to evaluate structural properties, ion intercalation kinetics, specific capacity and open circuit voltage of selected 2D materials at the atomic level. The simulation study supports the understanding while improving the properties of the materials to increase their efficiency in battery operation.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2019. s. 101
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1761
Emneord
Density functional theory, Non-equilibrium Green's function, 2D materials, Energy storage, Electron transport
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-369471 (URN)978-91-513-0547-9 (ISBN)
Disputas
2019-03-01, 80101, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-01-29 Laget: 2019-01-05 Sist oppdatert: 2019-02-18
2. Water Splitting Mechanism on 2D Catalytic Materials: DFT based Theoretical Investigations
Åpne denne publikasjonen i ny fane eller vindu >>Water Splitting Mechanism on 2D Catalytic Materials: DFT based Theoretical Investigations
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

In this thesis, we have envisaged systematic investigation to predict the water splitting mechanism on ultra-thin two-dimensional (2D) materials using cutting edge computation. Three different families of materials are considered as the case studies - i.MX2 (where M= W and Pt) based transition metal dichalcogenides, ii. lightest 2D material as Boron monolayer and iii. Mg3N2 monolayer. The catalytic reaction mechanism of water dissociation consists of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), both of which are required to be investigated thoroughly in order to perceive the complete picture of water splitting. This is because of the fact that the fundamental understanding of how and why the improved solar hydrogenproduction properties could be developed for such 2D materials is also of great technological importance. We have performed rigorous electronic structure calculations based on density functional theory (DFT) to find the optimum catalytic activity of the considered monolayer nanostructures. Hydrogen and oxygen evolution reaction activity are determined from the surface-adsorbate interaction based on the adsorption energy of the major intermediates of HER and OER mechanism. Our DFT based investigations will be the intuitive way to theoretically rationalize HER and OER activity for a series of functionalized different two-dimensional systems and can guide the actual experiment in the laboratory with a preconceived framework.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2019. s. 57
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1804
HSV kategori
Forskningsprogram
Fysik och astronomi med inriktning mot teoretisk fysik; Fysik med inriktning mot atom- molekyl- och kondenserande materiens fysik
Identifikatorer
urn:nbn:se:uu:diva-381720 (URN)978-91-513-0646-9 (ISBN)
Disputas
2019-05-27, Room Å80101, Ångströmlaboratoriet, Lägerhyddsvägen 2, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-04-29 Laget: 2019-04-13 Sist oppdatert: 2019-06-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Shukla, VivekanandWärnå, JohnJena, Naresh K.Grigoriev, AntonAhuja, Rajeev

Søk i DiVA

Av forfatter/redaktør
Shukla, VivekanandWärnå, JohnJena, Naresh K.Grigoriev, AntonAhuja, Rajeev
Av organisasjonen
I samme tidsskrift
The Journal of Physical Chemistry C

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 125 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf