uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theoretical Evidence behind Bifunctional Catalytic Activity in Pristine and Functionalized Al2C Monolayers
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Univ Fed Bahia, Inst Fis, Campus Univ Ondina, Salvador, BA, Brazil.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.ORCID iD: 0000-0002-3548-133x
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.ORCID iD: 0000-0002-6765-2084
Univ Fed Bahia, Inst Fis, Campus Univ Ondina, BR-40210340 Salvador, BA, Brazil..
Show others and affiliations
2018 (English)In: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 19, no 1, p. 148-152Article in journal (Refereed) Published
Abstract [en]

First principles electronic structure calculations based on the density functional theory (DFT) framework are performed to investigate hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) on two-dimensional Al2C monolayers. In addition to the pristine Al2C monolayer, monolayers doped with Nitrogen (N), Phosphorous (P), Boron (B), and Sulphur (S) are also investigated. After determining the individual adsorption energy of hydrogen and oxygen on the different functionalized Al2C monolayers, the adsorption free energies are predicted for each of the functionalized monolayers in order to assess their suitability for HER or OER. The density of states and optical absorption spectra calculations along with the work function of the functionalized Al2C monolayers enable us to gain a profound understanding of the electronic structure for the individual system and their relation to the water splitting mechanism.

Place, publisher, year, edition, pages
2018. Vol. 19, no 1, p. 148-152
Keywords [en]
adsorption free energy, Al2C monolayer, bifunctional catalysis, density functional calculations, doping
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-341495DOI: 10.1002/cphc.201700768ISI: 000419338600020PubMedID: 28925531OAI: oai:DiVA.org:uu-341495DiVA, id: diva2:1183834
Note

De 2 första författarna delar förstaförfattarskapet.

Available from: 2018-02-19 Created: 2018-02-19 Last updated: 2018-12-19Bibliographically approved
In thesis
1. Materials Modelling for Energy Harvesting: From Conversion to Application through Storage
Open this publication in new window or tab >>Materials Modelling for Energy Harvesting: From Conversion to Application through Storage
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this Ph.D. thesis, ab initio density functional theory along with molecular dynamics and global optimization methods are used to unveil and understand the structures and properties of energy relevant materials. In this connection, the following applications are considered: i. electrocatalyst for solar fuel production through water splitting, ii. hybrid perovskite solar cell for generation of electrical energy and iii. Battery materials to store the electrical energy. The water splitting mechanism in terms of hydrogen evolution and oxygen evolution reactions (HER and OER) on the catalytic surfaces has been envisaged based on the free energy diagram, named reaction coordinate, of the reaction intermediates. The Ti-functionalized two-dimensional (2D) borophene monolayer has been emerged as a promising material for HER and OER mechanisms as compared to the pristine borophene sheet. Further investigation in the series of this noble metal free monolayer catalyst is 2D Al2C monolayer both in form of pristine and functionalized with nitrogen (N), phosphorous (P), boron (B), and sulphur (S). It has been observed that only B substituted Al2C shows very close to thermoneutral, that could be the most promising candidate for HER on functionalized Al2C monolayer. The adsorption of O* intermediate is stronger in S-substituted Al2C, whereas it is less strongly adsorbed on N-substituted Al2C. The subsequent consideration is being the case of n-type doping (W) along with Ti codoped in BiVO4 to enhance the efficiency of BiVO4 photoanode for water splitting. The determined adsorption energy and corresponding Gibbs free energies depict that the Ti site is energetically more favorable for water splitting. Moreover, the Ti site possesses a lower overpotential in the W–Ti codoped sample as compared to the mono-W doped sample. We have also explored the effect of mixed cation and mixed anion substitution in the hybrid perovskite in terms of structural stability, electronic properties and optical response of hybrid perovskite crystal structures. It has been found that the insertion of bromine (Br) into the system could modulate the stability of the Guanidinium lead iodide (GAPbI3) hybrid perovskite.  Moreover, the band gap of the mixed hybrid perovskite is increased with the inclusion of smaller Br anion while replacing partially the larger iodine (I) anion. Finally the electrochemical storage mechanism for Sodium (Na) and lithium (Li) ion insertion has been envisaged in inorganic electrode (eldfellite, NaFe(SO4)2) as well as in more sustainable organic electrode (di-lithium terephthalate, Li2TP). The full desodiation capability of the eldfellite enhances the capacity while the activation energies (higher than 1 eV) for the Na+ ion diffusion for the charged state lower the ionic insertion rate. The key factor as the variation of Li-O coordination in the terephthalate, for the disproportionation redox reaction in Li2TP is also identified.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2019. p. 96
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1760
Keywords
Materials Modelling, DFT, Energy Materials, Photocatalysis, HER and OER, Hybrid Perovskite Solar Cells, Stability, Thermodynamics and Kinetics in Na-ion battery, Organic Crystal Battery
National Category
Condensed Matter Physics Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:uu:diva-369695 (URN)978-91-513-0544-8 (ISBN)
Public defence
2019-02-15, 80101, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2019-01-24 Created: 2018-12-19 Last updated: 2019-02-18

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Banerjee, AmitavaChakraborty, SudipAhuja, Rajeev

Search in DiVA

By author/editor
Banerjee, AmitavaChakraborty, SudipAhuja, Rajeev
By organisation
Materials Theory
In the same journal
ChemPhysChem
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 125 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf