uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Prospects of Graphene-hBN Heterostructure Nanogap for DNA Sequencing
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.ORCID-id: 0000-0002-8242-8005
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.ORCID-id: 0000-0001-5389-2469
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. KTH, Stockholm, Sweden.ORCID-id: 0000-0003-1231-9994
2017 (engelsk)Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, nr 46, s. 39945-39952Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Recent advances in solid-state nano-device-based DNA sequencing are at the helm of the development of a new paradigm, commonly referred to as personalized medicines. Paying heed to a timely need for standardizing robust nanodevices for cheap, fast, and scalable DNA detection, in this article, the nanogap formed by the lateral heterostructure of graphene and hexagonal boron nitride (hBN) is explored as a potential architecture. These heterostructures have been realized experimentally, and our study boasts the idea that the passivation of the edge of the graphene electrode with hBN will solve many of practical problems, such as high reactivity of the graphene edge and difficulty in controlled engineering of the graphene edge structure, while retaining the nanogap setup as a useful nanodevice for sensing applications. Employing first-principle density-functional-theory-based nonequilibrium Greens function methods, we identify that the DNA building blocks, nucleobases, uniquely couple with the states of the nanogap, and the resulting induced states can be attributed as leaving a fingerprint of the DNA sequence in the computed current-voltage (I-V) characteristic. Two bias windows are put forward: lower (1-1.2 V) and higher (2.7-3 V), where unique identification of all four bases is possible from the current traces, although higher sensitivity is obtained at the higher voltage window. Our study can be a practical guide for experimentalists toward development of a nanodevice DNA sensor based on graphene-hBN heterostructures.

sted, utgiver, år, opplag, sider
2017. Vol. 9, nr 46, s. 39945-39952
Emneord [en]
DNA sequencing, graphene-hBN heterostructure, nonequilibrium Green's function, density functional theory, I-V characteristics
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-343317DOI: 10.1021/acsami.7b06827ISI: 000416614600012OAI: oai:DiVA.org:uu-343317DiVA, id: diva2:1190071
Forskningsfinansiär
Swedish Research CouncilStandUpCarl Tryggers foundation Tilgjengelig fra: 2018-03-13 Laget: 2018-03-13 Sist oppdatert: 2019-01-05bibliografisk kontrollert
Inngår i avhandling
1. Computational Studies of 2D Materials: Application to Energy Storage and Electron Transport in Nanoscale Devices
Åpne denne publikasjonen i ny fane eller vindu >>Computational Studies of 2D Materials: Application to Energy Storage and Electron Transport in Nanoscale Devices
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The field of two-dimensional (2D) layered materials provides a new platform for studying diverse physical phenomena that are scientifically interesting and relevant for technological applications. Novel applications in electronics and energy storage harness the unique electronic, optical, and mechanical properties of 2D materials for design of crucial components. Atomically thin, with large surface to volume ratio, these materials are attractive for broad applications for hydrogen storage, sensing, batteries and photo-catalysis. Theoretical predictions from atomically resolved computational simulations of 2D materials play a pivotal role in designing and advancing these developments.

The central topic of this thesis is 2D materials studied using density functional theory and non-equilibrium Green’s function. The electronic structure and transport properties are discussed for several synthesized and predicted 2D materials, with diverse potential applications in nanoscale electronic devices, gas sensing, and electrodes for rechargeable batteries. Lateral and vertical heterostructures have been studied for applications in nanoscale devices such as graphene/hBN heterostructure nanogap for a potential DNA sequencing device, while in case of twisted bilayer black phosphorus nanojunction, where electronic and transport properties have been explored for diode-like characteristics device. We also have addressed the structural, electronic and transport properties of the recently synthesized polymorphs of 2D borons known as borophenes. We have explored the conventional methods of tuning the material’s properties such as strain in borophene and substitutional doping in black phosphorus with the further investigation of their gas sensing application.

A significant portion of this thesis is also dedicated to the energy storage applications of different 2D materials. Energy storage technologies arise with vital importance in providing effective ways to transport and commercialize the produced energy, aiming at rechargeable batteries with high energy and power density. In this context, first-principles simulations have been applied together with other theoretical tools to evaluate structural properties, ion intercalation kinetics, specific capacity and open circuit voltage of selected 2D materials at the atomic level. The simulation study supports the understanding while improving the properties of the materials to increase their efficiency in battery operation.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2019. s. 101
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1761
Emneord
Density functional theory, Non-equilibrium Green's function, 2D materials, Energy storage, Electron transport
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-369471 (URN)978-91-513-0547-9 (ISBN)
Disputas
2019-03-01, 80101, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-01-29 Laget: 2019-01-05 Sist oppdatert: 2019-02-18

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Shukla, VivekanandJena, Naresh K.Grigoriev, AntonAhuja, Rajeev

Søk i DiVA

Av forfatter/redaktør
Shukla, VivekanandJena, Naresh K.Grigoriev, AntonAhuja, Rajeev
Av organisasjonen
I samme tidsskrift
ACS Applied Materials and Interfaces

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 63 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf