uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Sulfonated Nanocellulose Beads as Potential Immunosorbents
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanoteknologi och funktionella material)ORCID-id: 0000-0003-2546-7224
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanotechnology and Functional Materials)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanotechnology and Functional Materials)ORCID-id: 0000-0002-8105-2317
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanoteknologi och funktionella material)ORCID-id: 0000-0002-5496-9664
Vise andre og tillknytning
2018 (engelsk)Inngår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 28, nr 3, s. 1899-1910Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Herein 2,3-dialdehyde cellulose beads prepared from Cladophora green algae nanocellulose were sulfonated and characterized by FTIR, conductometric titration, elemental analysis, SEM, ζ-potential, nitrogen adsorption–desorption and laser diffraction, aiming for its application as a potential immunosorbent material. Porous beads were prepared at mild reaction conditions in water and were chemically modified by sulfonation and reduction. The obtained 15 µm sized sulfonated beads were found to be highly charged and to have a high surface area of ~ 100 m2 g−1 and pore sizes between 20 and 60 nm, adequate for usage as immunosorbents. After reduction of remaining aldehyde groups, the beads could be classified as non-cytotoxic in indirect toxicity studies with human dermal fibroblasts as a first screening of their biocompatibility. The observed properties make the sulfonated cellulose beads interesting for further development as matrix material in immunosorbent devices.

sted, utgiver, år, opplag, sider
2018. Vol. 28, nr 3, s. 1899-1910
Emneord [en]
Periodate oxidation Dialdehyde cellulose, Surface group density, Sulfonated beads, Cytotoxicity
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-346207DOI: 10.1007/s10570-018-1661-2ISI: 000427379200027OAI: oai:DiVA.org:uu-346207DiVA, id: diva2:1190791
Forskningsfinansiär
Knut and Alice Wallenberg FoundationTilgjengelig fra: 2018-03-15 Laget: 2018-03-15 Sist oppdatert: 2018-05-18bibliografisk kontrollert
Inngår i avhandling
1. Oxidized Cladophora nanocellulose derivatives: Functionalization towards biocompatible materials
Åpne denne publikasjonen i ny fane eller vindu >>Oxidized Cladophora nanocellulose derivatives: Functionalization towards biocompatible materials
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Nanocellulose is a promising candidate for biomedical applications because of its enhanced mechanical properties, increased surface area and greater porosity compared to bulk cellulose.

This thesis investigates the functionalization of Cladophora nanocellulose and evaluates the influence of these modifications on physicochemical properties and biocompatibility of the material.

An electrochemically assisted TEMPO-mediated oxidation setup produced cellulose materials with varying degrees of carboxyl groups. This approach allowed control of the charge applied during the process and adjustment of the carboxylation. Carboxylated nanocellulose membranes had smaller surface area and total pore volume and a more compact structure than the membranes of the unmodified material. Moreover, the introduction of carboxyl groups resulted in membranes with an aligned fiber pattern; the alignment and aggregation of the fibers tended to increase with higher degrees of oxidation.

Cytocompatibility studies using fibroblasts and osteoblastic cells have shown that the bioinert Cladophora nanocellulose membranes can be rendered bioactive by the introduction of carboxyl groups. Nevertheless, at least 260 µmol g-1 carboxyl groups are required to obtain nanocellulose membranes that promote cell adhesion and spreading comparable to those observed when cells are cultured on tissue culture material.

In parallel, a periodate oxidation produced 10-20 µm 2,3-dialdehyde cellulose beads with very smooth and compact surfaces. This material was sulfonated up to 50% of the aldehyde groups, resulting in charged, porous structures that maintained the spherical shape. The mesoporous assembly could be tailored by altering the degree of sulfonation, which also produced variations in surface charge, ζ-potential, specific density, surface area and thermal stability.

Because the physicochemical properties make these sulfonated beads potential candidates for immunosorption and blood-related applications, they were further characterized regarding hemocompatibility. In vitro studies showed that both sulfonated beads and unmodified Cladophora nanocellulose did not present hemolytic activity. The pro-coagulant activity of the sulfonated beads was significantly lower than that of the unmodified nanocellulose; however, the material’s modifications did not diminish the activation of the complement system.

The results presented in this thesis show that it is possible to tailor the biocompatibility of Cladophora nanocellulose by introducing chemical modifications to its structure and by carefully tuning its physicochemical properties.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 75
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1649
Emneord
Cladophora nanocellulose, TEMPO oxidation, periodate oxidation, sulfonation, cellulose beads, surface properties, biomaterials, cell studies, hemocompatibility
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-346212 (URN)978-91-513-0280-5 (ISBN)
Disputas
2018-05-09, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:30 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-04-17 Laget: 2018-03-15 Sist oppdatert: 2018-10-08

Open Access i DiVA

fulltext(1494 kB)94 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1494 kBChecksum SHA-512
a61e2cdb39e670d89180b0ff0223b4cb760b7789b84288693439ac960eb108498c6c6cea7ba74ce66e5ad99451023e7f3b0f349dd6603a6452292119cdd78eae
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Rocha, IgorFerraz, NataliaMihranyan, AlbertStrömme, MariaLindh, Jonas

Søk i DiVA

Av forfatter/redaktør
Rocha, IgorFerraz, NataliaMihranyan, AlbertStrömme, MariaLindh, Jonas
Av organisasjonen
I samme tidsskrift
Cellulose (London)

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 94 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 116 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf