uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Infrared Spectroscopy Based on Broadly Tunable Quantum Cascade Lasers and Polycrystalline Diamond Waveguides
Ulm University, Germany.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Molecular Fingerprint Sweden AB, Eksätravägen 130, SE-756 55 Uppsala, Sweden .ORCID-id: 0000-0002-2011-0851
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: The Analyst, ISSN 0003-2654, E-ISSN 1364-5528, Vol. 143, nr 21, s. 5112-5119Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Recently emerging broadly tunable quantum cascade lasers (tQCL) emitting in the mid-infrared (MIR) are a versatile alternative to well established thermal emitters in combination with interferometers as applied in Fourier transform infrared (FTIR) spectroscopy. The wide and highly spectrally resolved wavelength tuning characteristics along with superior spectral energy density renders laser-based vibrational spectroscopy methods an efficient alternative vs. conventional molecular spectroscopies. Using diamond in attenuated total reflection (ATR) sensing formats benefits from the physical robustness and chemical resistivity of the internal reflective element (IRE) material. While inherent material absorption frequently limits the optical path length within diamond ATR elements, the herein presented design combining bright tQCLs with a multi-reflection polycrystalline diamond (PCD) ATR element enables an optical beam path length of approximately 5 cm. Thereby, sensitive spectroscopic measurements in the MIR are enabled. As an example, non-invasive glucose monitoring in human saliva is examined, highlighting the potential benefits of the proposed analytical concept with regards to exquisite sensitivity and selectivity in combination with a robust sensing interface, i.e., diamond. This approach paves the way towards directly analyzing molecular constituents in complex and potentially corrosive biomedical and biochemical matrices.

Ort, förlag, år, upplaga, sidor
2018. Vol. 143, nr 21, s. 5112-5119
Nationell ämneskategori
Analytisk kemi
Identifikatorer
URN: urn:nbn:se:uu:diva-346526DOI: 10.1039/C8AN00919HISI: 000448400900028PubMedID: 30284560OAI: oai:DiVA.org:uu-346526DiVA, id: diva2:1191429
Forskningsfinansiär
Deutsche Forschungsgemeinschaft (DFG), INST40/385-F1UGCarl Tryggers stiftelse för vetenskaplig forskning Vetenskapsrådet, 621-2014-5959EU, Horisont 2020, TROPSENSETillgänglig från: 2018-03-19 Skapad: 2018-03-19 Senast uppdaterad: 2019-06-26Bibliografiskt granskad
Ingår i avhandling
1. Microfabrication of Optical Components in Synthetic Diamond: Infrared Optics for Applications  in Astronomy and Spectroscopy
Öppna denna publikation i ny flik eller fönster >>Microfabrication of Optical Components in Synthetic Diamond: Infrared Optics for Applications  in Astronomy and Spectroscopy
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Infrared optics is a broad general term, relevant to a range of fields. The manufactured diamond optical components utilized within this thesis were applied to both astronomy, in which direct imaging of star system using large ground-based telescopes and diamond coronagraphs was performed, and in absorption spectroscopy probing solvents and proteins using a tuneable quantum cascade laser and diamond waveguides.

The optical components presented in this thesis are all made from diamond, as it is one of few materials that is transparent in the infrared regime. Furthermore, diamond has other unique properties that include high thermal conductivity, low thermal expansion and chemically inertness. In this thesis synthetic diamond grown by chemical vapor deposition has been used, using commercially available components and equipment.

The focus of this thesis was to produce optical gratings for different applications using plasma etching. The first steps involved understanding the etch process and optimizing the plasma etch parameters to enable the fabrication of new types of nano/micro meter sized structures in diamond. Optimization of the etch masks is also included in the work. With this newfound knowledge, deeper and narrower optical gratings than before could be realized.

Optical evaluation of the gratings in special designed optical test benches was used to determine the coronagraphic performance of the manufactured diamond coronagraphs. Most often the designed etch depth could not be reached in the first attempt and therefore a post-fabrication method for tuning the etch depth was developed.  This showed to be vital to realising high performing diamond coronagraphs. Diamond coronagraphs were also installed in several ground based telescopes and discovery of new astronomical objects are presented. With deeper understanding of the etch process more complex coronagraphs in diamond were manufactured opening up for use in the next generation of giant telescopes.

In the second part of this thesis, fabrication of diamond waveguides for sensitive analysis of solvents and proteins using infrared spectroscopy is presented.  Different designs of diamond waveguides are demonstrated and initial analysis of organic compounds and glucose using a quantum cascade laser as the light source is presented. This type of biosensor will be used to study the secondary structure of proteins relevant for different diseases.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 71
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1653
Nyckelord
Diamond, microfabrication, microoptics, astronomy, IR-spectroscopy, corongraph, waveguide
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
urn:nbn:se:uu:diva-346531 (URN)978-91-513-0293-5 (ISBN)
Disputation
2018-05-18, Siegbahnsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-04-27 Skapad: 2018-03-23 Senast uppdaterad: 2018-10-08

Open Access i DiVA

fulltext(6330 kB)35 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 6330 kBChecksumma SHA-512
aa7dc8516ccf3aa6806a7362a5719dbd00d24b3d7458c52bf42551ab8e157549f1e618aba03d541bb220d8d8f61aff1e1bf4205d18c737f1d82fe59bc07d5cea
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Vargas Catalán, ErnestoPiron, PierreKarlsson, Mikael

Sök vidare i DiVA

Av författaren/redaktören
Vargas Catalán, ErnestoPiron, PierreKarlsson, Mikael
Av organisationen
Tillämpad materialvetenskap
I samma tidskrift
The Analyst
Analytisk kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 35 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 124 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf