Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Plasma and Dust around Icy Moon Enceladus and Comet 67P/Churyumov-Gerasimenko
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics. (RPF)ORCID iD: 0000-0002-0957-3847
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Saturn's moon Enceladus and comet 67P/Churyumov-Gerasimenko both are examples of icy solar system objects from which gas and dust flow into space. At both bodies, the gas becomes partly ionized and the dust grains get charged. Both bodies have been visited by spacecraft carrying similar Langmuir probe instruments for observing the plasma and the charged dust. As it turns out, the conditions at Enceladus and the comet are different and we emphasize different aspects of their plasma environments. At Enceladus, we concentrate on the characteristic plasma regions and charged dust. At the comet, we investigate the plasma and in particular plasmavariations and cold electrons.

At Enceladus, internal frictional heating leads to gas escaping from cracks in the ice from the south pole region. This causes a plume of gas, which becomes partially ionized, and dust, becoming charged. We have investigated the plasma and charged nanodust in this region by the use of the Langmuir probe (LP) of the Radio and Plasma Wave Science (RPWS) instrument on Cassini. The dust charge density can be calculated from the quasineutrality condition, the difference between ion and electron density measurements from LP. We found support for this method by comparing to measurements of larger dust grains by the RPWS electric antennas. We use the LP method to find that the plasma and dust environment of Enceladus can be divided into at least three regions. In addition to the well known plume, these are the plume edge and the trail region.

At the comet, heat from the Sun sublimates ice to gas dragging dust along as it flows out into space. When the neutral gas molecules are ionized, by photoionization and electron impact ionization, we get a plasma. Models predict that the electron temperature just after ionization is around 10 eV, but that collisions with the neutral gas should cool the electron gas to below 0.1 eV. We used the Langmuir probe instrument (LAP) on Rosetta to estimate plasma temperatures and show a co-existence of cold and warm electrons in the plasma. We find that the cold plasma often is observed as brief pulses not only in the LAP data but also in the measurements of magnetic field, plasma density and ion energy by other Rosetta plasma instruments. We interpret these pulses as filaments of plasma propagating outwards from a diamagnetic cavity, as predicted by hybrid simulations. The gas production rate of comet 67P varied by more than three orders of magnitude during the Rosetta mission (up to March 2016). We therefore have an excellent opportunity to investigate how the electron cooling in a cometary coma evolves with activity. We used a method combining LAP and the Mutual Impedance Probe (MIP) for deriving the presence of cold electrons. We show that cold electrons were present intermittently during a large part of the mission and as far out as 3 AU. Models suggest only negligible cooling and we suggest that the ambipolar field keeps the electrons close to the nucleus and giving them more time to lose energy by collision.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2018. , p. 94
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1673
National Category
Fusion, Plasma and Space Physics
Research subject
Physics with specialization in Space and Plasma Physics
Identifiers
URN: urn:nbn:se:uu:diva-348856ISBN: 978-91-513-0346-8 (print)OAI: oai:DiVA.org:uu-348856DiVA, id: diva2:1198790
Public defence
2018-06-11, 2001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00 (English)
Opponent
Supervisors
Available from: 2018-05-18 Created: 2018-04-18 Last updated: 2018-10-08
List of papers
1. Plasma regions, charged dust and field-aligned currents near Enceladus
Open this publication in new window or tab >>Plasma regions, charged dust and field-aligned currents near Enceladus
Show others...
2015 (English)In: Planetary and Space Science, ISSN 0032-0633, E-ISSN 1873-5088, Vol. 117, p. 453-469Article in journal (Refereed) Published
Abstract [en]

We use data from several instruments on board Cassini to determine the characteristics of the plasma and dust regions around Saturn's moon Enceladus. For this we utilize the Langmuir probe and the electric antenna connected to the wideband receiver of the radio and plasma wave science (RPWS) instrument package as well as the magnetometer (MAG). We show that there are several distinct plasma and dust regions around Enceladus. Specifically they are the plume filled with neutral gas, plasma, and charged dust, with a distinct edge boundary region. Here we present observations of a new distinct plasma region, being a dust trail on the downstream side. This is seen both as a difference in ion and electron densities, indicating the presence of charged dust, and directly from the signals created on RPWS antennas by the dust impacts on the spacecraft. Furthermore, we show a very good scaling of these two independent dust density measurement methods over four orders of magnitude in dust density, thereby for the first time cross-validating them. To establish equilibrium with the surrounding plasma the dust becomes negatively charged by attracting free electrons. The dust distribution follows a simple power law and the smallest dust particles in the dust trail region are found to be 10 nm in size as well as in the edge region around the plume. Inside the plume the presence of even smaller particles of about 1 nm is inferred. From the magnetic field measurements we infer strong field-aligned currents at the geometrical edge of Enceladus.

Keywords
Enceladus, Langmuir probe, Plasma, Charged dust, MAG, RPWS
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
urn:nbn:se:uu:diva-268421 (URN)10.1016/j.pss.2015.09.010 (DOI)000364257400039 ()
Funder
Swedish National Space Board, 171/12Swedish National Space Board, 162/14
Available from: 2015-12-04 Created: 2015-12-04 Last updated: 2018-04-18Bibliographically approved
2. Cold and warm electrons at comet 67P/Churyumov-Gerasimenko
Open this publication in new window or tab >>Cold and warm electrons at comet 67P/Churyumov-Gerasimenko
Show others...
2017 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 605, article id A15Article in journal (Refereed) Published
Abstract [en]

Context. Strong electron cooling on the neutral gas in cometary comae has been predicted for a long time, but actual measurements of low electron temperature are scarce. Aims. Our aim is to demonstrate the existence of cold electrons in the inner coma of comet 67P/Churyumov-Gerasimenko and show filamentation of this plasma.

Methods. In situ measurements of plasma density, electron temperature and spacecraft potential were carried out by the Rosetta Langmuir probe instrument, LAP. We also performed analytical modelling of the expanding two-temperature electron gas.

Results. LAP data acquired within a few hundred km from the nucleus are dominated by a warm component with electron temperature typically 5-10 eV at all heliocentric distances covered (1.25 to 3.83 AU). A cold component, with temperature no higher than about 0.1 eV, appears in the data as short (few to few tens of seconds) pulses of high probe current, indicating local enhancement of plasma density as well as a decrease in electron temperature. These pulses first appeared around 3 AU and were seen for longer periods close to perihelion. The general pattern of pulse appearance follows that of neutral gas and plasma density. We have not identified any periods with only cold electrons present. The electron flux to Rosetta was always dominated by higher energies, driving the spacecraft potential to order -10 V.

Conclusions. The warm (5-10 eV) electron population observed throughout the mission is interpreted as electrons retaining the energy they obtained when released in the ionisation process. The sometimes observed cold populations with electron temperatures below 0.1 eV verify collisional cooling in the coma. The cold electrons were only observed together with the warm population. The general appearance of the cold population appears to be consistent with a Haser-like model, implicitly supporting also the coupling of ions to the neutral gas. The expanding cold plasma is unstable, forming filaments that we observe as pulses.

Keywords
comets: general, plasmas, space vehicles: instruments
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
urn:nbn:se:uu:diva-337755 (URN)10.1051/0004-6361/201630159 (DOI)000412231200111 ()
Funder
Swedish National Space Board, 109/12; 171/12; 135/13; 166/14; 168/15Swedish Research Council, 621-2013-4191
Note

Funding: The results presented here are only possible thanks to the combined efforts over 20 yr by many groups and individuals involved in Rosetta, including but not restricted to the ESA project teams at ESTEC, ESOC and ESAC and all people involved in designing, building, testing and operating RPC and LAP. We thank Kathrin Altwegg for discussions of the pulses in LAP and COPS. Rosetta is a European Space Agency (ESA) mission with contributions from its member states and the National Aeronautics and Space Administration (NASA). The work on RPC-LAP data was funded by the Swedish National Space Board under contracts 109/12, 171/12, 135/13, 166/14 and 168/15, and by Vetenskapsradet under contract 621-2013-4191. This work has made use of the AMDA and RPC Quicklook database, provided by a collaboration between the Centre de Donnees de la Physique des Plasmas CDPP (supported by CNRS, CNES, Observatoire de Paris and Universite Paul Sabatier, Toulouse), and Imperial College London (supported by the UK Science and Technology Facilities Council).

Available from: 2018-01-12 Created: 2018-01-12 Last updated: 2018-04-18Bibliographically approved
3. Plasma Density Structures at Comet 67P/Churyumov-Gerasimenko
Open this publication in new window or tab >>Plasma Density Structures at Comet 67P/Churyumov-Gerasimenko
Show others...
2018 (English)In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 477, no 1, p. 1296-1307Article in journal (Refereed) Published
Abstract [en]

We present Rosetta RPC case study from four events at various radial distance, phase angle and local time from autumn 2015, just after perihelion of comet 67P/Churyumov-Gerasimenko. Pulse like (high amplitude, up to minutes in time) signatures are seen with several RPC instruments in the plasma density (LAP, MIP), ion energy and flux (ICA) as well as magnetic field intensity (MAG). Furthermore the cometocentric distance relative to the electron exobase is seen to be a good organizing parameter for the measured plasma variations. The closer Rosetta is to this boundary, the more pulses are measured. This is consistent with the pulses being filaments of plasma originating from the diamagnetic cavity boundary as predicted by simulations. 

National Category
Fusion, Plasma and Space Physics
Research subject
Physics with specialization in Space and Plasma Physics; Physics
Identifiers
urn:nbn:se:uu:diva-347003 (URN)10.1093/mnras/sty765 (DOI)000432660300090 ()
Funder
Swedish National Space Board, 171/12Swedish National Space Board, 109/12
Available from: 2018-04-18 Created: 2018-04-18 Last updated: 2018-08-20Bibliographically approved
4. Cold electrons at comet 67P/Churyumov-Gerasimenko
Open this publication in new window or tab >>Cold electrons at comet 67P/Churyumov-Gerasimenko
Show others...
2018 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 616, article id A51Article in journal (Refereed) Published
Abstract [en]

Context. The electron temperature of the plasma is one important aspect of the environment. Electrons created by photoionization or impact ionization of atmospheric gas have energies ∼10 eV. In an active comet coma the gas density is high enough for rapid cooling of the electron gas to the neutral gas temperature (few hundred kelvin). How cooling evolves in less active comets has not been studied before.

Aims. To investigate how electron cooling varied as comet 67P/Churyumov-Gerasimenko changed its activity by three orders of magnitude during the Rosetta mission.

Methods. We use in-situ data from Rosetta plasma and neutral gas sensors. By combining Langmuir probe bias voltage sweeps and Mutual Impedance Probe measurements we determine when cold electrons form at least 25% of the total electron density. We compare the results to what is expected from simple models of electron cooling, using the observed neutral gas density as input.

Results. We demonstrate that the slope of the Langmuir probe sweep can be used as a proxy for cold electron presence. We show statistics of cold electron observations over the 2 year mission period. We find cold electrons at lower activity than expected by a simple model based on free radial expansion and continuous loss of electron energy. Cold electrons are seen mainly when the gas density indicates an exobase may have formed.

Conclusions. Collisional cooling of electrons following a radial outward path is not sufficient for explaining the observations. We suggest the ambipolar electric field is important for the observed cooling. This field keeps electrons in the inner coma for much longer time, giving them time to dissipate energy by collisions with the neutrals. We conclude there is need of better models to describe the plasma environment of comets, including at least two populations of electrons and the ambipolar field.

Place, publisher, year, edition, pages
EDP Sciences, 2018
National Category
Fusion, Plasma and Space Physics
Research subject
Physics with specialization in Space and Plasma Physics
Identifiers
urn:nbn:se:uu:diva-348472 (URN)10.1051/0004-6361/201833251 (DOI)000441817100004 ()
Funder
Swedish National Space Board, 171/12, 109/12, 166/14The European Space Agency (ESA)
Available from: 2018-04-18 Created: 2018-04-18 Last updated: 2023-09-14Bibliographically approved

Open Access in DiVA

fulltext(6078 kB)900 downloads
File information
File name FULLTEXT01.pdfFile size 6078 kBChecksum SHA-512
8e39df297e57ae4eeb795e83dff555221e1ae01e428c9d990ddf026a177c7ef4d905766ac21ae1a5e1634dcf5a13529e33aa83a367e2b6160e49a2771205b06c
Type fulltextMimetype application/pdf

Authority records

Engelhardt, Ilka. A. D.

Search in DiVA

By author/editor
Engelhardt, Ilka. A. D.
By organisation
Space Plasma Physics
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 905 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2537 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf