uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
12-Way 100 kW Reentrant Cavity-Based Power Combiner With Doorknob Couplers
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, FREIA.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, FREIA.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, FREIA.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, FREIA.
Vise andre og tillknytning
2018 (engelsk)Inngår i: IEEE Microwave and Wireless Components Letters, ISSN 1531-1309, E-ISSN 1558-1764, Vol. 28, nr 2, s. 111-113Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We present radio frequency (RF) and thermal characterization of a compact 12-way power combiner designed for operation at 352 MHz at a power level of 100 kW with 5% duty factor. The combiner is based on a reentrant cavity with 12 input doorknob couplers and one output coupler that is integrated with the post of the cavity and forms doorknob type geometry. We introduce convenient design formulas that allow easy identification of a suitable parameter space, which is then refined with numerical simulations. Low-power RF measurements of a prototype show 0.2% insertion loss and a relative rms amplitude imbalance between the ports of 0.1% and phase imbalance of 0.036 degrees rms. The matching is better than -25 dB over a 3-dB bandwidth around the design frequency. We also tested the combiner up to 200 kW and found the RF loss to be comparable to that of the low-power measurement. In a long test run at 100 kW with 5% duty factor, the combiner temperature stabilized at 10 degrees above ambient.

sted, utgiver, år, opplag, sider
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC , 2018. Vol. 28, nr 2, s. 111-113
Emneord [en]
High-power handling capability, high-power radio frequency (RF) measurements, power combiner, thermal study
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-349845DOI: 10.1109/LMWC.2017.2780619ISI: 000425173500007OAI: oai:DiVA.org:uu-349845DiVA, id: diva2:1203329
Tilgjengelig fra: 2018-05-03 Laget: 2018-05-03 Sist oppdatert: 2019-11-21bibliografisk kontrollert
Inngår i avhandling
1. High Power Radio Frequency Solid-State Amplifiers and Combiners for Particle Accelerators: From module to system design approach
Åpne denne publikasjonen i ny fane eller vindu >>High Power Radio Frequency Solid-State Amplifiers and Combiners for Particle Accelerators: From module to system design approach
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The rise of Big Science projects brings issues related to the energy consumption and the associated environmental impacts of such large-scale facilities. Therefore, environmentally-sustainable developments are undertaken towards the adoption of energy savings and improved energy-efficient approaches. The advent of the superconducting (SC) radio frequency (RF) accelerating cavity is bringing answers to these issues. Such superconducting RF (SRF) cavity is made of niobium that allows much higher accelerating gradients with a minimization of the energy consumption. The SC RF technology is increasingly used in many modern particle accelerators, including: the European Spallation Source (ESS), the X-ray Free Electron Laser (XFEL), the Linac Coherent Light Source (LCLS)-II and the proposed International Linear Collider (ILC).

The innovation of solid state PA technology pushes limits regarding packaging, efficiency, frequency capability, thermal stability, making them more attractive than other well-established alternative technologies, such as vacuum tube technology in mid-range power applications. Through the investigations of designs and techniques, this research goal of the thesis allows to improve solid-state based power generation systems from module to the overall system design. This thesis introduces the single-ended PA design approach in planar technology and at kilowatt level. The design solution unlocks different possibilities including: improved integration, layout flexibility for tuning, and suitably for mass productions that are demanded in future high peak power generation systems. The novel amplifier design is followed by time domain characterization to fully evaluate the pulse profiles of such amplifiers when delivering kilowatt output power level for operation in conjunction with SRF accelerating cavities. Amplitude and phase stability of those amplifiers are also investigated in time-domain. The extracted data can then be used as measurement-based model for predicting factors which could degrade the overall stability of the associated PA.

Future RF power generation systems built around solid state PAs need also efficient combining strategies. Two engineering design solutions are investigated in this thesis aiming for mid- and high- range power combination. One solution is based on a combination of the Gysel structure using suspended strip-line technology for improved power handling capability. Another solution is implementing a radial combiner, which uses re-entrant cavity resonator at 352 MHz and door-nob geometry for coupling at inputs and at the output. These solutions facilitate the scaling up 400 kW for powering ESS spoke cavities while maintaining a high degree of efficiency in RF power generation. This thesis gives insights of system integration and tuning procedures with a demonstration of combining 8 modules, delivering a total of 10 kW output power. Along with the proposed combining solutions at higher power levels, the nominal power block of 10 kW is used as an elementary block to propose scaling up in power till the 400 kW nominal power required by ESS.

Finally, this thesis focuses on implementing an optimal charging scheme for SRF cavities, which helps reducing the wasted energy and improves the overall efficiency operation at future accelerating facilities. Therefore, these results contribute further to the larger adoption of solid state technologies in the future power generation systems for particle accelerators.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2019. s. 98
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1881
Emneord
solid state technology, power amplifier, superconducting cavities, optimal charging, high efficiency, particle accelerators
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot mikrovågsteknik
Identifikatorer
urn:nbn:se:uu:diva-397500 (URN)978-91-513-0818-0 (ISBN)
Disputas
2020-01-15, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-12-20 Laget: 2019-11-21 Sist oppdatert: 2020-01-13

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Goryashko, VitaliyJobs, MagnusHoang, LongEriksson, JohanRuber, Roger

Søk i DiVA

Av forfatter/redaktør
Goryashko, VitaliyJobs, MagnusHoang, LongEriksson, JohanRuber, Roger
Av organisasjonen
I samme tidsskrift
IEEE Microwave and Wireless Components Letters

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 4153 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf