uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High DPP-4 concentrations in adolescents are associated with low intact GLP-1
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, Research group (Dept. of women´s and children´s health), Paediatric Inflammation Research.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Antaros Med, SE-43183 Molndal, Sweden.
Show others and affiliations
2018 (English)In: Journal of Clinical Endocrinology and Metabolism, ISSN 0021-972X, E-ISSN 1945-7197, Vol. 103, no 8, p. 2958-2966Article in journal (Refereed) Published
Abstract [en]

Context: Dipeptidyl Peptidase-4 (DPP-4) metabolizes glucagon-like peptide-1 (GLP-1) and increased DPP4 levels are associated with obesity and visceral adiposity in adults.

Objective: Investigating DPP-4 levels in adolescents and association with, firstly, circulating intact GLP-1 levels and glucose tolerance, secondly, BMI, and, thirdly visceral, subcutaneous and liver fat compartments.

Design: Cross-sectional study, July 2012 to April 2015.

Setting: Pediatric obesity clinic, Uppsala University Hospital.

Patients and participants: Children and adolescents with obesity (n=59) and lean controls (n=21), age 8-18.

Main outcome measures: BMI SDS, fasting plasma concentrations of DPP-4, total and intact GLP-1, fasting and OGTT concentrations of glucose and visceral (VAT) and subcutaneous (SAT) adipose tissue volumes and liver fat fraction.

Results: Plasma DPP-4 decreased with age both in obese (41 ng/ml per year) and lean subjects (48 ng/ml per year). Plasma DPP-4 was higher in males both in the obesity and lean group. When adjusting for age and sex, plasma DPP-4 was negatively associated with intact GLP-1 at fasting, B=-12.3, 95% CI [-22.9, -1.8] and during OGTT, B=-12.1, 95% CI [-22.5, -1.7]. No associations were found between DPP-4 and plasma glucose measured at fasting or after a 2-hour OGTT. Plasma DPP-4 was 19% higher in the obese subjects. Among adipose tissue compartments the strongest association was with VAT, B=0.05, 95% CI [-0.02, 0.12].

Conclusions: In adolescents, high plasma DPP-4 concentrations are associated with low proportion of intact GLP-1, high BMI, young age and male sex. The observed associations are compatible with an increased metabolism of GLP-1 in childhood obesity.

Place, publisher, year, edition, pages
Endocrine Society , 2018. Vol. 103, no 8, p. 2958-2966
National Category
Endocrinology and Diabetes
Identifiers
URN: urn:nbn:se:uu:diva-354234DOI: 10.1210/jc.2018-00194ISI: 000442236900022PubMedID: 29850829OAI: oai:DiVA.org:uu-354234DiVA, id: diva2:1220949
Funder
EU, FP7, Seventh Framework Programme, 279153Swedish Diabetes Association, DIA 2016-146Ernfors Foundation, 160504Swedish Research Council, 2016-01040EXODIAB - Excellence of Diabetes Research in SwedenErik, Karin och Gösta Selanders FoundationAvailable from: 2018-06-19 Created: 2018-06-19 Last updated: 2019-03-28Bibliographically approved
In thesis
1. Impaired Glucose Tolerance in Childhood Obesity: Contribution of Glucagon, GLP-1 and Inflammation
Open this publication in new window or tab >>Impaired Glucose Tolerance in Childhood Obesity: Contribution of Glucagon, GLP-1 and Inflammation
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the wake of increased obesity prevalence, impaired glucose tolerance (IGT) and type 2 diabetes (T2D) in childhood and adolescence is increasingly common. Given the negative impacts these conditions have on health over time, understanding the pathophysiology in those affected early in life is important. Both the proglucagon-derived peptides and low-grade inflammation have been implicated in the development of obesity-related complications. The aim of this thesis was to study across the glucose tolerance spectrum in children and adolescents with obesity 1) proglucagon-derived peptides glucagon, GLP-1 and glicentin, 2) dipeptidyl peptidase-4 (DPP-4) and its degradation of GLP-1 and 3) novel inflammatory markers. To this end, children and adolescents of the Uppsala Longitudinal Study of Childhood Obesity were studied.   

Children and adolescents with obesity had higher fasting plasma glucagon concentrations than lean controls. In particular visceral adiposity, hyperinsulinemia, triglycerides and free fatty acids (FFAs) were associated with high plasma glucagon concentrations. In isolated islets elevated FFAs caused hypersecretion of glucagon. In children and adolescents with IGT or T2D, fasting plasma glucagon was further elevated and the GLP-1 and glicentin response to an oral glucose tolerance test (OGTT) was decreased. In T2D plasma glucagon increased during the first 15 minutes of OGTT. Plasma DPP-4 concentrations were elevated in obesity and associated with lower proportion of intact GLP-1 but not with IGT. Several pro-inflammatory markers were elevated in children and adolescents with obesity but not further elevated in IGT or T2D with the exception of low plasma Tumor necrosis factor-related weak inducer of apoptosis (TWEAK) levels, which were associated with IGT, hyperinsulinemia and hyperglucagonemia. High plasma hepatocyte growth factor (HGF) concentration was associated with increased risk of further weight gain in children and adolescents with obesity.

In conclusion, elevated glucagon concentration at fasting, a hyperglucagonemic response to OGTT and reduced GLP-1 and glicentin are characteristics of IGT and T2D development in childhood obesity reflecting altered usage of the proglucagon gene. DPP-4 concentrations are elevated in childhood obesity but not associated with IGT. Reduced circulating TWEAK was identified as a novel marker of IGT early in life. Children with obesity and high HGF are less likely to respond well to lifestyle intervention.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2019. p. 49
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1560
Keywords
Childhood obesity, impaired glucose tolerance, type 2 diabetes, glucagon, glucagon-like peptide-1, dipeptidyl peptidase-4, inflammation, free fatty acids, insulin, visceral adiposity
National Category
Pediatrics Endocrinology and Diabetes Cell and Molecular Biology
Research subject
Medical Science
Identifiers
urn:nbn:se:uu:diva-380318 (URN)978-91-513-0618-6 (ISBN)
Public defence
2019-05-22, Room B21, BMC, Husargatan 3, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2019-04-26 Created: 2019-03-28 Last updated: 2019-06-18

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed