uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Pricing financial derivatives using radial basis function generated finite differences with polyharmonic splines on smoothly varying node layouts
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.ORCID iD: 0000-0003-3164-5242
2018 (English)In: Computing Research Repository, no 1808.02365Article in journal (Other academic) Submitted
Place, publisher, year, edition, pages
2018. no 1808.02365
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:uu:diva-356834OAI: oai:DiVA.org:uu-356834DiVA, id: diva2:1238521
Projects
eSSENCEAvailable from: 2018-08-07 Created: 2018-08-14 Last updated: 2018-08-21Bibliographically approved
In thesis
1. Radial Basis Function generated Finite Difference Methods for Pricing of Financial Derivatives
Open this publication in new window or tab >>Radial Basis Function generated Finite Difference Methods for Pricing of Financial Derivatives
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The purpose of this thesis is to present state of the art in radial basis function generated finite difference (RBF-FD) methods for pricing of financial derivatives. This work provides a detailed overview of RBF-FD properties and challenges that arise when the RBF-FD methods are used in financial applications.

Across the financial markets of the world, financial derivatives such as futures, options, and others, are traded in substantial volumes. Knowing the prices of those financial instruments at any given time is of utmost importance. Many of the theoretical pricing models for financial derivatives can be represented using multidimensional PDEs, which are in most cases analytically unsolvable.

We present RBF-FD as a recent numerical method with the potential to efficiently approximate solutions of PDEs in finance. As its name suggests, the RBF-FD method is of a finite difference (FD) type, from the radial basis function (RBF) group of methods. When used to approximate differential operators, the method is featured with a sparse differentiation matrix, and it is relatively simple to implement — like the standard FD methods. Moreover, the method is mesh-free, meaning that it does not require a structured discretization of the computational domain, and it is of a customizable order of accuracy — which are the features it inherits from the global RBF approximations.

The results in this thesis demonstrate how to successfully apply RBF-FD to different pricing problems by studying the effects of RBF shape parameters for Gaussian RBF-FD approximations, improving the approximation of differential operators in multiple dimensions by using polyharmonic splines augmented with polynomials, constructing suitable node layouts, and smoothing of the initial data to enable high order convergence of the method. Finally, we compare RBF-FD with other available methods on a plethora of pricing problems to form an objective image of the method’s performance.

Future development of RBF-FD is expected to result in a solid mesh-free high order method for multi-dimensional PDEs, that can be used together with dimension reduction techniques to efficiently solve problems of high dimensionality that we often encounter in finance.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2018. p. 63
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1702
Keywords
Radial basis function, Finite difference, Computational finance, Pricing of financial derivatives, Option pricing, Partial differential equation
National Category
Computational Mathematics
Research subject
Scientific Computing with specialization in Numerical Analysis
Identifiers
urn:nbn:se:uu:diva-357220 (URN)978-91-513-0403-8 (ISBN)
Public defence
2018-09-28, ITC 2446, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2018-09-06 Created: 2018-08-14 Last updated: 2018-10-02

Open Access in DiVA

No full text in DiVA

Other links

https://arxiv.org/abs/1808.02365

Authority records BETA

Milovanović, Slobodan

Search in DiVA

By author/editor
Milovanović, Slobodan
By organisation
Division of Scientific ComputingNumerical Analysis
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 112 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf