uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Titanium surface modification to enhance antibacterial and bioactive properties while retaining biocompatibility
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences. (Materials in medicine)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
Show others and affiliations
2019 (English)In: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 96, p. 272-279Article in journal (Refereed) Published
Abstract [en]

Bacterial infections associated with metal implants are severe problems affecting a considerable amount of people with dental or orthopedic implants. This study aims to examine the antibacterial effect of a Titanium-peroxy gel layer on the modified surface of commercially pure titanium grade 2. Variations in a multi-step surface modification procedure were tested to determine the best combination that provided an antibacterial effect while enhancing bioactivity without compromising biocompatibility. Soaking the surfaces in 30 wt% hydrogen peroxide held at 80 °C provided antibacterial activity while subsequent surface treatments in concentrated sodium and calcium hydroxide solutions were preformed to enhance bioactivity. Staphylococcus epidermidis was used to determine the antibacterial effect through both direct contact and biofilm inhibition tests while human dermal fibroblast cells and MC3T3 pre osteoblast cells were utilized to test biocompatibility. The greatest antibacterial effect was observed with only hydrogen peroxide treatment, but the resulting surface was neither bioactive nor biocompatible. It was found that subsequent surface treatments with sodium hydroxide followed by calcium hydroxide provided a bioactive surface that was also biocompatible. Additionally, a final treatment with autoclaving showed positive effects with regards to enhanced bioactivity. This multi-step surface modification procedure offers a promising, non-antibiotic, solution for combatting infections associated with biomedical implants.

Place, publisher, year, edition, pages
2019. Vol. 96, p. 272-279
Keywords [en]
Titanium, Antibacterial, Bioactivity, Cell viability, Sodium titanate, Calcium titanate
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:uu:diva-358023DOI: 10.1016/j.msec.2018.11.021ISI: 000456760700027PubMedID: 30606532OAI: oai:DiVA.org:uu-358023DiVA, id: diva2:1241379
Funder
VinnovaAvailable from: 2018-08-23 Created: 2018-08-23 Last updated: 2019-03-15Bibliographically approved
In thesis
1. Bioactive Coatings and Antibacterial Approaches for Titanium Medical Implants
Open this publication in new window or tab >>Bioactive Coatings and Antibacterial Approaches for Titanium Medical Implants
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The aim of this thesis was to characterize and manufacture coatings and surfaces with antibacterial properties and retained or enhanced bioactivity and biocompatibility. The aim was also to study the optimal composition and parameters of mixtures for debridement of bacterial biofilms on titanium surfaces. The mixtures contained TiO2 particles and H2O2 and were irradiated by light to activate reactive oxygen species (ROS) formation.

In the first part of the thesis, characterization of a thin, multifunctional hydroxyapatite (HA) coating was performed. The coating was applied to anodized cancellous bone screws with the purpose of stimulating local bone formation without bonding too firmly and providing local antibacterial effect. Specifications of the coating included a thickness of around 1 µm, high crystallinity, Ca/P ratio close to the theoretical value of 1.67 and comprise the functional groups of HA. Additionally, the adhesion of the coating to the substrate should be stronger than the cohesion of the coating. Characterization results showed that the coating met the specification for all criteria.        

In the second part of the thesis, titanium discs were soaked in H2O2 and subsequently in NaOH and Ca(OH)2 to acquire an antibacterial surface that at the same time is bioactive and biocompatible. The surface demonstrated bioactive properties, assessed by soaking in phosphate buffered saline for seven days in 37°C and examined in scanning electron microscopy and X-ray diffraction.

The third part of the thesis consisted of studying the ROS generation of TiO2/H2O2 mixtures irradiated with UV-Vis light, and to study the antibacterial effect of these mixtures on S. epidermidis Xen 43 and Pseudomonas aeruginosa biofilms on titanium surfaces. The generation of ROS from different TiO2 crystalline forms and different H2O2 concentrations under light UV-Vis irradiation was determined by rhodamine B degradation. It showed that rutile and 1-3.5 mM H2O2 resulted in the highest degradation of all combinations with almost 100% degradation under 365 nm light and 77% degradation under 405 nm light after 10 min.

The debridement of the S. epidermidis and P. aeruginosa biofilm discs showed that 0.95 M (3%) H2O2 was the most effective parameter for disinfection of the discs. The addition of TiO2 particles showed a significant extra effect in one of the three studies.

Place, publisher, year, edition, pages
Uppsala: Uppsala University, 2018. p. 63
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1712
Keywords
Bioactivity, antibacterial, titanium, hydrogen peroxide, hydroxyapatite, biomaterial
National Category
Other Materials Engineering
Research subject
Engineering Science with specialization in Materials Science
Identifiers
urn:nbn:se:uu:diva-358253 (URN)978-91-513-0424-3 (ISBN)
Public defence
2018-10-12, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2018-09-20 Created: 2018-08-27 Last updated: 2018-10-15

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Janson, OscarGururaj, SatwikPujari-Palmer, ShiuliKarlsson Ott, MarjamStrømme, MariaEngqvist, HåkanWelch, Ken

Search in DiVA

By author/editor
Janson, OscarGururaj, SatwikPujari-Palmer, ShiuliKarlsson Ott, MarjamStrømme, MariaEngqvist, HåkanWelch, Ken
By organisation
Applied Materials SciencesNanotechnology and Functional Materials
In the same journal
Materials science & engineering. C, biomimetic materials, sensors and systems
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 6309 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf