uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thromboinflammation as bioactivity assessment of H2O2-alkali modified titanium surfaces
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Orthopaedics. Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.ORCID iD: 0000-0003-2422-831X
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences. Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.ORCID iD: 0000-0001-9529-650X
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.ORCID iD: 0000-0003-4543-1130
Show others and affiliations
2019 (English)In: Journal of materials science. Materials in medicine, ISSN 0957-4530, E-ISSN 1573-4838, Vol. 30, no 6, article id 66Article in journal (Refereed) Published
Abstract [en]

The release of growth factors from platelets, mediated by the coagulation and the complement system, plays an important role in the bone formation around implants. This study aimed at exploring the thromboinflammatory response of H2O2-alkali soaked commercially pure titanium grade 2 discs exposed to whole human blood, as a way to assess the bioactivity of the discs. Commercially pure titanium grade 2 discs were modified by soaking in H2O2, NaOH and Ca(OH)2. The platelet aggregation, coagulation activation and complement activation was assessed by exposing the discs to fresh whole blood from human donors. The platelet aggregation was examined by a cell counter and the coagulation and complement activation were assessed by ELISA-measurements of the concentration of thrombin-antithrombin complex, C3a and terminal complement complex. The modified surface showed a statistically significant increased platelet aggregation, coagulation activation and complement activation compared to unexposed blood. The surface also showed a statistically significant increase of coagulation activation compared to PVC. The results of this study showed that the H2O2-alkali soaked surfaces induced a thromboinflammatory response that indicates that the surfaces are bioactive.

Place, publisher, year, edition, pages
2019. Vol. 30, no 6, article id 66
National Category
Other Materials Engineering Biomaterials Science
Identifiers
URN: urn:nbn:se:uu:diva-358034DOI: 10.1007/s10856-019-6248-4ISI: 000468976700001PubMedID: 31127371OAI: oai:DiVA.org:uu-358034DiVA, id: diva2:1241393
Funder
Swedish Research Council, 2016-2075-5.1; 2016-04519VinnovaAvailable from: 2018-08-23 Created: 2018-08-23 Last updated: 2019-06-25Bibliographically approved
In thesis
1. Bioactive Coatings and Antibacterial Approaches for Titanium Medical Implants
Open this publication in new window or tab >>Bioactive Coatings and Antibacterial Approaches for Titanium Medical Implants
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The aim of this thesis was to characterize and manufacture coatings and surfaces with antibacterial properties and retained or enhanced bioactivity and biocompatibility. The aim was also to study the optimal composition and parameters of mixtures for debridement of bacterial biofilms on titanium surfaces. The mixtures contained TiO2 particles and H2O2 and were irradiated by light to activate reactive oxygen species (ROS) formation.

In the first part of the thesis, characterization of a thin, multifunctional hydroxyapatite (HA) coating was performed. The coating was applied to anodized cancellous bone screws with the purpose of stimulating local bone formation without bonding too firmly and providing local antibacterial effect. Specifications of the coating included a thickness of around 1 µm, high crystallinity, Ca/P ratio close to the theoretical value of 1.67 and comprise the functional groups of HA. Additionally, the adhesion of the coating to the substrate should be stronger than the cohesion of the coating. Characterization results showed that the coating met the specification for all criteria.        

In the second part of the thesis, titanium discs were soaked in H2O2 and subsequently in NaOH and Ca(OH)2 to acquire an antibacterial surface that at the same time is bioactive and biocompatible. The surface demonstrated bioactive properties, assessed by soaking in phosphate buffered saline for seven days in 37°C and examined in scanning electron microscopy and X-ray diffraction.

The third part of the thesis consisted of studying the ROS generation of TiO2/H2O2 mixtures irradiated with UV-Vis light, and to study the antibacterial effect of these mixtures on S. epidermidis Xen 43 and Pseudomonas aeruginosa biofilms on titanium surfaces. The generation of ROS from different TiO2 crystalline forms and different H2O2 concentrations under light UV-Vis irradiation was determined by rhodamine B degradation. It showed that rutile and 1-3.5 mM H2O2 resulted in the highest degradation of all combinations with almost 100% degradation under 365 nm light and 77% degradation under 405 nm light after 10 min.

The debridement of the S. epidermidis and P. aeruginosa biofilm discs showed that 0.95 M (3%) H2O2 was the most effective parameter for disinfection of the discs. The addition of TiO2 particles showed a significant extra effect in one of the three studies.

Place, publisher, year, edition, pages
Uppsala: Uppsala University, 2018. p. 63
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1712
Keywords
Bioactivity, antibacterial, titanium, hydrogen peroxide, hydroxyapatite, biomaterial
National Category
Other Materials Engineering
Research subject
Engineering Science with specialization in Materials Science
Identifiers
urn:nbn:se:uu:diva-358253 (URN)978-91-513-0424-3 (ISBN)
Public defence
2018-10-12, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2018-09-20 Created: 2018-08-27 Last updated: 2018-10-15

Open Access in DiVA

fulltext(1307 kB)21 downloads
File information
File name FULLTEXT01.pdfFile size 1307 kBChecksum SHA-512
8df3f5baaf973164121e12877f343b957a2e5eb4d8711db1402434c87bafbb94427965f8d91b98e100a889246fafd934e99d38bf07dedf28b04ac2bbbec46659
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Authority records BETA

Hulsart Billström, GryJanson, OscarEngqvist, HåkanWelch, KenHong, Jaan

Search in DiVA

By author/editor
Hulsart Billström, GryJanson, OscarEngqvist, HåkanWelch, KenHong, Jaan
By organisation
OrthopaedicsApplied Materials SciencesNanotechnology and Functional MaterialsSolid State PhysicsClinical Immunology
In the same journal
Journal of materials science. Materials in medicine
Other Materials EngineeringBiomaterials Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 21 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf