uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Unravelling in-situ formation of highly active mixed metal oxide CuInO2 nanoparticles during CO2 electroreduction
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.ORCID-id: 0000-0002-7892-5260
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.ORCID-id: 0000-0003-2538-8104
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.ORCID-id: 0000-0001-6776-5460
Vise andre og tillknytning
2018 (engelsk)Inngår i: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 49, s. 40-50Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Technologies and catalysts for converting carbon dioxide (CO2) to immobile products are of high interest to minimize greenhouse effects. Copper(I) is a promising catalytic active state of copper but hampered by the inherent instability in comparison to copper(II) or copper(0). Here, we report a stabilization of the catalytic active state of copper(I) by the formation of a mixed metal oxide CuInO2 nanoparticle during the CO2 electroreduction. Our result shows the incorporation of nanoporous Sn:In2O3 interlayer to Cu2O pre-catalyst system lead to the formation of CuInO2 nanoparticles with remarkably higher activity for CO2 electroreduction at lower overpotential in comparison to the conventional Cu nanoparticles derived from sole Cu2O. Operando Raman spectroelectrochemistry is employed to in-situ monitor the process of nanoparticles formation during the electrocatalytic process. The experimental data are collaborated with DFT calculations to provide insight into the electro-formation of the type of Cu-based mixed metal oxide catalyst during the CO2 electroreduction, where a formation mechanism via copper ion diffusion across the substrate is suggested.

sted, utgiver, år, opplag, sider
ELSEVIER SCIENCE BV , 2018. Vol. 49, s. 40-50
Emneord [en]
Cuprous oxide, Copper indium oxide, CO2 electroreduction, Operando Raman spectroelectrochemistry, Density functional theory
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-358275DOI: 10.1016/j.nanoen.2018.04.013ISI: 000434829500006OAI: oai:DiVA.org:uu-358275DiVA, id: diva2:1243042
Forskningsfinansiär
Stiftelsen Olle Engkvist ByggmästareGöran Gustafsson Foundation for promotion of scientific research at Uppala University and Royal Institute of TechnologyJ. Gust. Richert stiftelseSwedish National Infrastructure for Computing (SNIC), 2017-1-57Swedish National Infrastructure for Computing (SNIC), 2016-10-23Tilgjengelig fra: 2018-08-30 Laget: 2018-08-30 Sist oppdatert: 2019-03-29bibliografisk kontrollert
Inngår i avhandling
1. Transition Metal-Based Electrocatalysts for Alkaline Water Splitting and CO2 Reduction
Åpne denne publikasjonen i ny fane eller vindu >>Transition Metal-Based Electrocatalysts for Alkaline Water Splitting and CO2 Reduction
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

With excessive usage of fossil fuels and ever-increasing environmental issues, numerous efforts have been devoted to the development of renewable energies for the replacement of traditional fossil fuels to reduce greenhouse gas emission and realize the rapidly growing demand for global energy. Renewable energies, however, often show diurnal and seasonal variations in power output, forming a need for energy storage to meet people’s continuous energy supply. One approach is to use electrolysis and produce a fuel that can be used on demand at a later stage. A full realization of effective electricity-to-fuel conversion, however, is still limited by the large overpotential requirements as well as concerns with the usage of scarce platinum group elements. This thesis presents studies on transition metal-based electrocatalysts for alkaline water splitting and CO2 reduction, which are two technologies to produce a chemical fuel from renewable electricity. Our aim is to develop efficient, inexpensive, and robust electrocatalysts based on earth-abundant elements with high energy conversion efficiencies.

In the first part, we develop and investigate three different electrocatalysts intended for high-performance electrocatalysis of water; NiO nanoflakes (NFs) with tuneable surface morphologies, Fe doped NiO nanosheets (NSs), and self-optimized NiFe layered double hydroxide (LDH) NSs. The self-assembled NiO NFs show drastically different performance for the oxygen evolution reaction (OER). Besides the morphology effect on the catalytic property, the presence of Fe is also functional to improve the catalytic activity for both OER and hydrogen evolution reaction (HER). The NiFe LDH NSs form the most effective system for the overall catalytic performance and is dramatically improved via a dynamic self-optimization, especially for HER, where the overpotential decreases from 206 mV to 59 mV at 10 mA cm-2. In order to get insight into the interfacial reaction processes, a variety of techniques were performed to explore the underlying reasons for the catalytic improvement. Ex-situ X-ray photoelectron spectroscopy, transmission electron microscope and in-situ Raman spectroscopy were utilized to characterize and understand the oxidations states, the crystallinity and the active phases. Electrochemical impedance spectroscopy was applied to investigate the dominating reaction mechanisms during high-performance and stable electrocatalysis.

In the second part, dynamically formed CuInO2 nanoparticles were demonstrated to be high-performance electrocatalysts for CO2 reduction. In-situ Raman spectroscopy was utilized to reveal and understand the formation of CuInO2 nanoparticles based on the Cu2O pre-catalyst onto an interlayer of indium tin oxide under the electrochemical reaction. Density function theory calculation and ex-situ X-ray diffraction further prove the formation of CuInO2 nanoparticles during vigorous catalysis. The findings give important clues on how Cu-based electrocatalysts can be formed into more active materials and can provide inspiration for other Cu-based intermetallic oxides for high-efficiency CO2 reduction.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2019. s. 87
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1791
Emneord
Alkaline water splitting, CO2 reduction, Electrocatalyst, In-situ Raman spectroscopy.
HSV kategori
Forskningsprogram
Kemi med inriktning mot materialkemi
Identifikatorer
urn:nbn:se:uu:diva-380575 (URN)978-91-513-0620-9 (ISBN)
Disputas
2019-05-21, Polhemsalen, 10134, Ångström Laboratory, Lägerhyddsv. 1, Uppsala, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-04-29 Laget: 2019-03-29 Sist oppdatert: 2019-06-18

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Imani, RoghayehQiu, ZhenYounesi, RezaPazoki, MeysamFernandes, Daniel L. A.Mitev, Pavlin D.Edvinsson, TomasTian, Haining

Søk i DiVA

Av forfatter/redaktør
Imani, RoghayehQiu, ZhenYounesi, RezaPazoki, MeysamFernandes, Daniel L. A.Mitev, Pavlin D.Edvinsson, TomasTian, Haining
Av organisasjonen
I samme tidsskrift
Nano Energy

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 125 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf