uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Defective endothelial cell migration in the absence of Cdc42 leads to capillary-venous malformations
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Vascular Biology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Vascular Biology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Vascular Biology.
VIB, Vesalius Res Ctr, Lab Angiogenesis & Vasc Metab, Leuven, Belgium; Katholieke Univ Leuven, Dept Oncol, Lab Angiogenesis & Vasc Metab, Leuven, Belgium.
Show others and affiliations
2018 (English)In: Development, ISSN 0950-1991, E-ISSN 1477-9129, Vol. 145, no 13, article id UNSP dev161182Article in journal (Refereed) Published
Abstract [en]

Formation and homeostasis of the vascular system requires several coordinated cellular functions, but their precise interplay during development and their relative importance for vascular pathologies remain poorly understood. Here, we investigated the endothelial functions regulated by Cdc42 and their in vivo relevance during angiogenic sprouting and vascular morphogenesis in the postnatal mouse retina. We found that Cdc42 is required for endothelial tip cell selection, directed cell migration and filopodia formation, but dispensable for cell proliferation or apoptosis. Although the loss of Cdc42 seems generally compatible with apical-basal polarization and lumen formation in retinal blood vessels, it leads to defective endothelial axial polarization and to the formation of severe vascular malformations in capillaries and veins. Tracking of Cdc42-depleted endothelial cells in mosaic retinas suggests that these capillary-venous malformations arise as a consequence of defective cell migration, when endothelial cells that proliferate at normal rates are unable to re-distribute within the vascular network.

Place, publisher, year, edition, pages
2018. Vol. 145, no 13, article id UNSP dev161182
Keywords [en]
Vascular malformations, Cdc42, Cell migration, Endothelial axial polarity, Angiogenesis, Proliferation
National Category
Cell and Molecular Biology
Identifiers
URN: urn:nbn:se:uu:diva-361537DOI: 10.1242/dev.161182ISI: 000439224400008PubMedID: 29853619OAI: oai:DiVA.org:uu-361537DiVA, id: diva2:1252222
Funder
Swedish Research Council, VR2015-00550EU, European Research Council, 2011-294556EU, European Research Council, EU-ERC269073Knut and Alice Wallenberg Foundation, 2012.0272EU, FP7, Seventh Framework Programme, 317250Swedish Cancer Society, CAN2015/771The Wenner-Gren FoundationAvailable from: 2018-10-01 Created: 2018-10-01 Last updated: 2018-10-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Laviña, BàrbaraCastro, MarcoNiaudet, ColinÁlvarez-Aznar, AlbertoBentley, KatieBetsholtz, ChristerGängel, Konstantin

Search in DiVA

By author/editor
Laviña, BàrbaraCastro, MarcoNiaudet, ColinÁlvarez-Aznar, AlbertoBentley, KatieBrakebusch, CordBetsholtz, ChristerGängel, Konstantin
By organisation
Vascular Biology
In the same journal
Development
Cell and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 95 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf