uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards Tunable Protein-Carrier Wound Dressings Based on Nanocellulose Hydrogels Crosslinked with Calcium Ions
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanotechnology and Functional Materials)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanotechnology and Functional Materials)ORCID-id: 0000-0002-5496-9664
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanotechnology and Functional Materials)
2018 (engelsk)Inngår i: Nanomaterials, E-ISSN 2079-4991, Vol. 8, nr 7, artikkel-id 550Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A Ca2+-crosslinked wood-based nanofibrillated cellulose (NFC) hydrogel was investigated to build knowledge toward the use of nanocellulose for topical drug delivery applications in a chronic wound healing context. Proteins of varying size and isoelectric point were loaded into the hydrogel in a simple soaking procedure. The release of the proteins from the hydrogel was monitored and kinetics determining parameters of the release processes were assessed. The integrity of the hydrogel and proteins were also studied. The results showed that electrostatic interactions between the proteins and the negatively-charged NFC hydrogel structure played a central role in the loading process. The release of the proteins were governed by Fickian diffusion. An increased protein size, as well as a positive protein charge facilitated a slower and more sustained release process from the hydrogel matrix. At the same time, the positively-charged protein was shown to increase the post-loading hydrogel strength. Released proteins maintained structural stability and activity, thus indicating that the Ca2+-crosslinked NFC hydrogel could function as a carrier of therapeutic proteins without compromising protein function. It is foreseen that, by utilizing tunable charge properties of the NFC hydrogel, release profiles can be tailored to meet very specific treatment needs.

sted, utgiver, år, opplag, sider
MDPI, 2018. Vol. 8, nr 7, artikkel-id 550
Emneord [en]
nanofibrillated cellulose, ion-crosslinked, drug delivery, wound healing, chronic wounds
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
URN: urn:nbn:se:uu:diva-362722DOI: 10.3390/nano8070550ISI: 000442523100101PubMedID: 30036970OAI: oai:DiVA.org:uu-362722DiVA, id: diva2:1254365
Forskningsfinansiär
Swedish Research Council Formas, 942-2015-475Tilgjengelig fra: 2018-10-09 Laget: 2018-10-09 Sist oppdatert: 2018-10-30bibliografisk kontrollert
Inngår i avhandling
1. Ion-Crosslinked Nanocellulose Hydrogels for Advanced Wound Care Applications
Åpne denne publikasjonen i ny fane eller vindu >>Ion-Crosslinked Nanocellulose Hydrogels for Advanced Wound Care Applications
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

A current trend in the field of wound care is the development of wound healing materials that are designed to address specific types of wounds or underlying pathologies to achieve improved healing. At the same time, there is a societal drive to replace synthetic materials with renewable alternatives. The work presented in this thesis was therefore carried out to investigate the use of wood nanocellulose, produced from the world’s most abundant biopolymer, cellulose, in advanced wound care applications.

Wood-based nanofibrillated cellulose (NFC) was chemically functionalized and crosslinked using calcium to obtain a self-standing hydrogel. The NFC hydrogel was evaluated in terms of its physicochemical properties, biocompatibility, blood interactions, bacterial interactions, in vivo wound healing ability and, finally, as a protein carrier. Parallel with the assessment of the NFC hydrogel, modified versions of the material were tested to investigate the tunability of the above-mentioned characteristics.

The ability of the hydrogel to maintain a moist wound bed was demonstrated. Evaluation of the biocompatibility showed that the material was cytocompatible and did not trigger inflammatory mechanisms. Furthermore, the NFC hydrogel supported cell proliferation, and was shown to possess hemostatic properties. It was also discovered that the material had a slight bacteriostatic effect and the ability to act as a barrier against bacteria. When tested in vivo, the hydrogel was found to significantly improve wound healing.

Modifications through the incorporation of additives to the hydrogel matrix, as well as exchange of the crosslinking ion, were shown to influence the biological response to the material. Moreover, the results presented here demonstrate the possibility of using the NFC hydrogel as a protein carrier; the easily adjustable charge property being identified as a central parameter for manipulation to regulate the release profile.

In conclusion, this work has demonstrated the extensive wound healing ability of the calcium-crosslinked NFC hydrogel, and represents an important milestone in the research on NFC towards advanced wound care applications. It is expected that the easily modifiable nature of the material can be exploited to further develop the NFC hydrogel to suit the treatment needs for a broad range of wound types.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 81
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1731
Emneord
nanofibrillated cellulose, wood nanocellulose, ion crosslinking, hydrogel, wound healing, biocompatibility, blood interactions, bacterial interactions, protein carrier, nanotherapeutic
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
urn:nbn:se:uu:diva-363087 (URN)978-91-513-0474-8 (ISBN)
Disputas
2018-11-30, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:30 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-11-09 Laget: 2018-10-12 Sist oppdatert: 2018-11-19

Open Access i DiVA

fulltext(1232 kB)57 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1232 kBChecksum SHA-512
504f9dff0db027072bfec9081ff23f310a98537de1ebc9bf0246348fbd84287023a93766eb2a2a2e12499c0631d0dd59d6700e789950b1a76c474b54f089c910
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Basu, AlexStrömme, MariaFerraz, Natalia

Søk i DiVA

Av forfatter/redaktør
Basu, AlexStrömme, MariaFerraz, Natalia
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 57 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 196 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf