uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Strain controlled electronic and transport anisotropies in two-dimensional borophene sheets
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.ORCID-id: 0000-0001-7724-6357
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.ORCID-id: 0000-0001-5389-2469
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.ORCID-id: 0000-0002-8242-8005
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Royal Inst Technol KTH, Dept Mat & Engn, Appl Mat Phys, SE-10044 Stockholm, Sweden.ORCID-id: 0000-0003-1231-9994
2018 (Engelska)Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 20, nr 35, s. 22952-22960Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Two recent reports on realization of an elemental 2D analogue of graphene:borophene (Science, 2015, 350, 1513-1516; Nat. Chem., 2016, 8, 563-568) focus on the inherent anisotropy and directional dependence of the electronic properties of borophene polymorphs. Achieving stable 2D borophene structures may lead to some degree of strain in the system because of the substrate-lattice mismatch. We use first principles density functional theory (DFT) calculations to study the structural, electronic and transport properties of (12) and -borophene polymorphs. We verified the directional dependency and found the tunable anisotropic behavior of the transport properties in these two polymorphs. We find that strain as low as 6% brings remarkable changes in the properties of these two structures. We further investigate current-voltage (I-V) characteristics in the low bias regime after applying a strain to see how the anisotropy of the current is affected. Such observations like the sizeable tuning of transport and I-V characteristics at the expense of minimal strain suggest the suitability of 2D borophene for futuristic device applications.

Ort, förlag, år, upplaga, sidor
Royal Society of Chemistry, 2018. Vol. 20, nr 35, s. 22952-22960
Nationell ämneskategori
Materialkemi
Identifikatorer
URN: urn:nbn:se:uu:diva-363428DOI: 10.1039/c8cp03815eISI: 000445220500055PubMedID: 30156222OAI: oai:DiVA.org:uu-363428DiVA, id: diva2:1256833
Forskningsfinansiär
VetenskapsrådetSwedish National Infrastructure for Computing (SNIC), SNIC2017-11-28 SNIC2017-5-8 SNIC2017-1-237Tillgänglig från: 2018-10-18 Skapad: 2018-10-18 Senast uppdaterad: 2019-01-05Bibliografiskt granskad
Ingår i avhandling
1. Computational Studies of 2D Materials: Application to Energy Storage and Electron Transport in Nanoscale Devices
Öppna denna publikation i ny flik eller fönster >>Computational Studies of 2D Materials: Application to Energy Storage and Electron Transport in Nanoscale Devices
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The field of two-dimensional (2D) layered materials provides a new platform for studying diverse physical phenomena that are scientifically interesting and relevant for technological applications. Novel applications in electronics and energy storage harness the unique electronic, optical, and mechanical properties of 2D materials for design of crucial components. Atomically thin, with large surface to volume ratio, these materials are attractive for broad applications for hydrogen storage, sensing, batteries and photo-catalysis. Theoretical predictions from atomically resolved computational simulations of 2D materials play a pivotal role in designing and advancing these developments.

The central topic of this thesis is 2D materials studied using density functional theory and non-equilibrium Green’s function. The electronic structure and transport properties are discussed for several synthesized and predicted 2D materials, with diverse potential applications in nanoscale electronic devices, gas sensing, and electrodes for rechargeable batteries. Lateral and vertical heterostructures have been studied for applications in nanoscale devices such as graphene/hBN heterostructure nanogap for a potential DNA sequencing device, while in case of twisted bilayer black phosphorus nanojunction, where electronic and transport properties have been explored for diode-like characteristics device. We also have addressed the structural, electronic and transport properties of the recently synthesized polymorphs of 2D borons known as borophenes. We have explored the conventional methods of tuning the material’s properties such as strain in borophene and substitutional doping in black phosphorus with the further investigation of their gas sensing application.

A significant portion of this thesis is also dedicated to the energy storage applications of different 2D materials. Energy storage technologies arise with vital importance in providing effective ways to transport and commercialize the produced energy, aiming at rechargeable batteries with high energy and power density. In this context, first-principles simulations have been applied together with other theoretical tools to evaluate structural properties, ion intercalation kinetics, specific capacity and open circuit voltage of selected 2D materials at the atomic level. The simulation study supports the understanding while improving the properties of the materials to increase their efficiency in battery operation.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2019. s. 101
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1761
Nyckelord
Density functional theory, Non-equilibrium Green's function, 2D materials, Energy storage, Electron transport
Nationell ämneskategori
Den kondenserade materiens fysik Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:uu:diva-369471 (URN)978-91-513-0547-9 (ISBN)
Disputation
2019-03-01, 80101, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-01-29 Skapad: 2019-01-05 Senast uppdaterad: 2019-02-18

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Shukla, VivekanandGrigoriev, AntonJena, Naresh K.Ahuja, Rajeev

Sök vidare i DiVA

Av författaren/redaktören
Shukla, VivekanandGrigoriev, AntonJena, Naresh K.Ahuja, Rajeev
Av organisationen
Materialteori
I samma tidskrift
Physical Chemistry, Chemical Physics - PCCP
Materialkemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 32 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf