uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fully convolutional networks for automated segmentation of abdominal adipose tissue depots in multicenter water–fat MRI
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Radiologi.
BioVenture Hub, Antaros Med, Molndal, Sweden.
Paracelsus Med Univ, Dept Pediat, Salzburg, Austria; Paracelsus Med Univ, Obes Res Unit, Salzburg, Austria.
Paracelsus Med Univ, Dept Pediat, Salzburg, Austria; Paracelsus Med Univ, Obes Res Unit, Salzburg, Austria.
Vise andre og tillknytning
2019 (engelsk)Inngår i: Magnetic Resonance in Medicine, ISSN 0740-3194, E-ISSN 1522-2594, Vol. 81, nr 4, s. 2736-2745Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Purpose: An approach for the automated segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in multicenter water–fat MRI scans of the abdomen was investigated, using 2 different neural network architectures.

Methods: The 2 fully convolutional network architectures U‐Net and V‐Net were trained, evaluated, and compared using the water–fat MRI data. Data of the study Tellus with 90 scans from a single center was used for a 10‐fold cross‐validation in which the most successful configuration for both networks was determined. These configurations were then tested on 20 scans of the multicenter study beta‐cell function in JUvenile Diabetes and Obesity (BetaJudo), which involved a different study population and scanning device.

Results: The U‐Net outperformed the used implementation of the V‐Net in both cross‐validation and testing. In cross‐validation, the U‐Net reached average dice scores of 0.988 (VAT) and 0.992 (SAT). The average of the absolute quantification errors amount to 0.67% (VAT) and 0.39% (SAT). On the multicenter test data, the U‐Net performs only slightly worse, with average dice scores of 0.970 (VAT) and 0.987 (SAT) and quantification errors of 2.80% (VAT) and 1.65% (SAT).

Conclusion: The segmentations generated by the U‐Net allow for reliable quantification and could therefore be viable for high‐quality automated measurements of VAT and SAT in large‐scale studies with minimal need for human intervention. The high performance on the multicenter test data furthermore shows the robustness of this approach for data of different patient demographics and imaging centers, as long as a consistent imaging protocol is used.

sted, utgiver, år, opplag, sider
2019. Vol. 81, nr 4, s. 2736-2745
Emneord [en]
abdominal, adipose tissue, deep learning, fully convolutional networks, segmentation, water-fat MRI
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-364355DOI: 10.1002/mrm.27550ISI: 000462092100044PubMedID: 30311704OAI: oai:DiVA.org:uu-364355DiVA, id: diva2:1258737
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, 279153Tilgjengelig fra: 2018-10-25 Laget: 2018-10-25 Sist oppdatert: 2019-04-17bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Langner, TaroForslund, AndersBergsten, PeterAhlström, HåkanKullberg, Joel

Søk i DiVA

Av forfatter/redaktør
Langner, TaroForslund, AndersBergsten, PeterAhlström, HåkanKullberg, Joel
Av organisasjonen
I samme tidsskrift
Magnetic Resonance in Medicine

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 44 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf