uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Last night in Sweden? Using Gaussian processes to study changing demographics at the level of municipalities
Stockholm School of Economics.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Tillämpad matematik och statistik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Tillämpad matematik och statistik.
(engelsk)Inngår i: Artikkel i tidsskrift (Annet vitenskapelig) Submitted
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-364654OAI: oai:DiVA.org:uu-364654DiVA, id: diva2:1259740
Tilgjengelig fra: 2018-10-30 Laget: 2018-10-30 Sist oppdatert: 2018-10-30
Inngår i avhandling
1. Gaussian process models of social change
Åpne denne publikasjonen i ny fane eller vindu >>Gaussian process models of social change
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Social systems produce complex and nonlinear relationships in the indicator variables that describe them. Traditional statistical regression techniques are commonly used in the social sciences to study such systems. These techniques, such as standard linear regression, can prevent the discovery of the complex underlying mechanisms and rely too much on the expertise and prior beliefs of the data analyst. In this thesis, we present two methodologies that are designed to allow the data to inform us about these complex relations and provide us with interpretable models of the dynamics.

The first methodology is a Bayesian approach to analysing the relationship between indicator variables by finding the parametric functions that best describe their interactions. The parametric functions with the highest model evidence are found by fitting a large number of potential models to the data using Bayesian linear regression and comparing their respective model evidence. The methodology is computationally fast due to the use of conjugate priors, and this allows for inference on large sets of models. The second methodology is based on a Gaussian processes framework and is designed to overcome the limitations of the first modelling approach. This approach balances the interpretability of more traditional parametric statistical methods with the predictability and flexibility of non-parametric Gaussian processes.

This thesis contains four papers where we apply the methodologies to both real-life problems in the social sciences as well as on synthetic data sets. In paper I, the first methodology (Bayesian linear regression) is applied to the classic problem of how democracy and economic development interact. In paper II and IV, we apply the second methodology (Gaussian processes) to study changes in the political landscape and demographic shifts in Sweden in the last decades. In paper III, we apply the second methodology on a synthetic data set to perform parameter estimation on complex dynamical systems.

sted, utgiver, år, opplag, sider
Uppsala: Department of Mathematics, 2018. s. 51
Serie
Uppsala Dissertations in Mathematics, ISSN 1401-2049 ; 111
Emneord
Gaussian processes, Bayesian statistics, Dynamical systems, Social sciences
HSV kategori
Forskningsprogram
Tillämpad matematik och statistik
Identifikatorer
urn:nbn:se:uu:diva-364656 (URN)978-91-506-2734-3 (ISBN)
Disputas
2018-12-21, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-11-30 Laget: 2018-10-30 Sist oppdatert: 2018-11-30

Open Access i DiVA

Fulltekst mangler i DiVA

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 101 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf