uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gaussian process models of social change
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Tillämpad matematik och statistik.
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Fritextbeskrivning
Abstract [en]

Social systems produce complex and nonlinear relationships in the indicator variables that describe them. Traditional statistical regression techniques are commonly used in the social sciences to study such systems. These techniques, such as standard linear regression, can prevent the discovery of the complex underlying mechanisms and rely too much on the expertise and prior beliefs of the data analyst. In this thesis, we present two methodologies that are designed to allow the data to inform us about these complex relations and provide us with interpretable models of the dynamics.

The first methodology is a Bayesian approach to analysing the relationship between indicator variables by finding the parametric functions that best describe their interactions. The parametric functions with the highest model evidence are found by fitting a large number of potential models to the data using Bayesian linear regression and comparing their respective model evidence. The methodology is computationally fast due to the use of conjugate priors, and this allows for inference on large sets of models. The second methodology is based on a Gaussian processes framework and is designed to overcome the limitations of the first modelling approach. This approach balances the interpretability of more traditional parametric statistical methods with the predictability and flexibility of non-parametric Gaussian processes.

This thesis contains four papers where we apply the methodologies to both real-life problems in the social sciences as well as on synthetic data sets. In paper I, the first methodology (Bayesian linear regression) is applied to the classic problem of how democracy and economic development interact. In paper II and IV, we apply the second methodology (Gaussian processes) to study changes in the political landscape and demographic shifts in Sweden in the last decades. In paper III, we apply the second methodology on a synthetic data set to perform parameter estimation on complex dynamical systems.

sted, utgiver, år, opplag, sider
Uppsala: Department of Mathematics, 2018. , s. 51
Serie
Uppsala Dissertations in Mathematics, ISSN 1401-2049 ; 111
Emneord [en]
Gaussian processes, Bayesian statistics, Dynamical systems, Social sciences
HSV kategori
Forskningsprogram
Tillämpad matematik och statistik
Identifikatorer
URN: urn:nbn:se:uu:diva-364656ISBN: 978-91-506-2734-3 (tryckt)OAI: oai:DiVA.org:uu-364656DiVA, id: diva2:1259749
Disputas
2018-12-21, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-11-30 Laget: 2018-10-30 Sist oppdatert: 2018-11-30
Delarbeid
1. Using Bayesian dynamical systems, model averaging and neural networks to determine interactions between socio-economic indicators
Åpne denne publikasjonen i ny fane eller vindu >>Using Bayesian dynamical systems, model averaging and neural networks to determine interactions between socio-economic indicators
2018 (engelsk)Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 13, nr 5, artikkel-id e0196355Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Social and economic systems produce complex and nonlinear relationships in the indicator variables that describe them. We present a Bayesian methodology to analyze the dynamical relationships between indicator variables by identifying the nonlinear functions that best describe their interactions. We search for the 'best' explicit functions by fitting data using Bayesian linear regression on a vast number of models and then comparing their Bayes factors. The model with the highest Bayes factor, having the best trade-off between explanatory power and interpretability, is chosen as the 'best' model. To be able to compare a vast number of models, we use conjugate priors, resulting in fast computation times. We check the robustness of our approach by comparison with more prediction oriented approaches such as model averaging and neural networks. Our modelling approach is illustrated using the classical example of how democracy and economic growth relate to each other. We find that the best dynamical model for democracy suggests that long term democratic increase is only possible if the economic situation gets better. No robust model explaining economic development using these two variables was found.

sted, utgiver, år, opplag, sider
PUBLIC LIBRARY SCIENCE, 2018
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-359665 (URN)10.1371/journal.pone.0196355 (DOI)000431757400027 ()29742126 (PubMedID)
Tilgjengelig fra: 2018-09-05 Laget: 2018-09-05 Sist oppdatert: 2018-10-30bibliografisk kontrollert
2. Explaining and predicting the rise of a radical right-wing party using Gaussian processes
Åpne denne publikasjonen i ny fane eller vindu >>Explaining and predicting the rise of a radical right-wing party using Gaussian processes
(engelsk)Inngår i: Artikkel i tidsskrift (Annet vitenskapelig) Submitted
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-364653 (URN)
Tilgjengelig fra: 2018-10-30 Laget: 2018-10-30 Sist oppdatert: 2018-10-30
3. Model selection and parameter estimation of complex dynamical systems using semi-parametric Gaussian processes
Åpne denne publikasjonen i ny fane eller vindu >>Model selection and parameter estimation of complex dynamical systems using semi-parametric Gaussian processes
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
HSV kategori
Forskningsprogram
Matematik med inriktning mot tillämpad matematik
Identifikatorer
urn:nbn:se:uu:diva-364652 (URN)
Tilgjengelig fra: 2018-10-30 Laget: 2018-10-30 Sist oppdatert: 2018-10-30
4. Last night in Sweden? Using Gaussian processes to study changing demographics at the level of municipalities
Åpne denne publikasjonen i ny fane eller vindu >>Last night in Sweden? Using Gaussian processes to study changing demographics at the level of municipalities
(engelsk)Inngår i: Artikkel i tidsskrift (Annet vitenskapelig) Submitted
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-364654 (URN)
Tilgjengelig fra: 2018-10-30 Laget: 2018-10-30 Sist oppdatert: 2018-10-30

Open Access i DiVA

fulltext(887 kB)154 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 887 kBChecksum SHA-512
e0c0be5961606c783d81768c32be6eb2fb6982df53466bfdc63dcb73522734d5a2725e4911488bac335280c1e855028d60125386919f6f68e11aa4bfb0d92aa7
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Blomqvist, Björn Rune Helmer
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 154 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 441 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf