uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detection of Malignancy-Associated Changes Due to Precancerous and Oral Cancer Lesions: A Pilot Study Using Deep Learning
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Reglerteknik. Uppsala university.ORCID-id: 0000-0002-1636-3469
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
Vise andre og tillknytning
2018 (engelsk)Inngår i: CYTO2018 / [ed] Andrea Cossarizza, 2018Konferansepaper, Poster (with or without abstract) (Fagfellevurdert)
Abstract [en]

Background: The incidence of oral cancer is increasing and it is effecting younger individuals. PAP smear-based screening, visual, and automated, have been used for decades, to successfully decrease the incidence of cervical cancer. Can similar methods be used for oral cancer screening? We have carried out a pilot study using neural networks for classifying cells, both from cervical cancer and oral cancer patients. The results which were reported from a technical point of view at the 2017 IEEE International Conference on Computer Vision Workshop (ICCVW), were particularly interesting for the oral cancer cases, and we are currently collecting and analyzing samples from more patients. Methods: Samples were collected with a brush in the oral cavity and smeared on glass slides, stained, and prepared, according to standard PAP procedures. Images from the slides were digitized with a 0.35 micron pixel size, using focus stacks with 15 levels 0.4 micron apart. Between 245 and 2,123 cell nuclei were manually selected for analysis for each of 14 datasets, usually 2 datasets for each of the 6 cases, in total around 15,000 cells. A small region was cropped around each nucleus, and the best 2 adjacent focus layers in each direction were automatically found, thus creating images of 100x100x5 pixels. Nuclei were chosen with an aim to select well preserved free-lying cells, with no effort to specifically select diagnostic cells. We therefore had no ground truth on the cellular level, only on the patient level. Subsets of these images were used for training 2 sets of neural networks, created according to the ResNet and VGG architectures described in literature, to distinguish between cells from healthy persons, and those with precancerous lesions. The datasets were augmented through mirroring and 90 degrees rotations. The resulting networks were used to classify subsets of cells from different persons, than those in the training sets. This was repeated for a total of 5 folds. Results: The results were expressed as the percentage of cell nuclei that the neural networks indicated as positive. The percentage of positive cells from healthy persons was in the range 8% to 38%. The percentage of positive cells collected near the lesions was in the range 31% to 96%. The percentages from the healthy side of the oral cavity of patients with lesions ranged 37% to 89%. For each fold, it was possible to find a threshold for the number of positive cells that would correctly classify all patients as normal or positive, even for the samples taken from the healthy side of the oral cavity. The network based on the ResNet architecture showed slightly better performance than the VGG-based one. Conclusion: Our small pilot study indicates that malignancyassociated changes that can be detected by neural networks may exist among cells in the oral cavity of patients with precancerous lesions. We are currently collecting samples from more patients, and will present those results as well, with our poster at CYTO 2018.

sted, utgiver, år, opplag, sider
2018.
Emneord [en]
cytometry, deep learning, oral cancer, image analysis
HSV kategori
Forskningsprogram
Datoriserad bildbehandling
Identifikatorer
URN: urn:nbn:se:uu:diva-366820OAI: oai:DiVA.org:uu-366820DiVA, id: diva2:1265836
Konferanse
33rd Congress of the International Society for Advancement of Cytometry
Forskningsfinansiär
VINNOVATilgjengelig fra: 2018-11-26 Laget: 2018-11-26 Sist oppdatert: 2018-11-26

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

http://cytoconference.org/2018/Abstracts-and-Awards/Program-Abstracts/CYTO-2018-Abstract-V7-FINALb.aspx

Personposter BETA

Bengtsson, EwertWieslander, HåkanWählby, CarolinaHirsch, Jan-MichaelKecheril Sadanandan, SajithLindblad, Joakim

Søk i DiVA

Av forfatter/redaktør
Bengtsson, EwertWieslander, HåkanWählby, CarolinaHirsch, Jan-MichaelKecheril Sadanandan, SajithLindblad, Joakim
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 376 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf